Artículo

Granados-Castro, C.M.; Ancarani, L.U.; Gasaneo, G.; Mitnik, D.M.; Hoggan P.E.; Ozdogan T. "A Sturmian Approach to Photoionization of Molecules" (2016) Electron Correlation in Molecules ? ab initio Beyond Gaussian Quantum Chemistry, 2016. 73:3-57
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

An accurate theoretical description of photoionization processes is necessary in order to understand a wide variety of physical and chemical phenomena and allows one to test correlation effects of the target. Compared to the case of many-electron atoms several extra challenges occur for molecules. The scattering problem is generally multicenter and highly noncentral. The molecular orientation with respect to the polarization of the radiation field must also be taken into account. These features make the computational task much more cumbersome and expensive than for atomic targets. In order to calculate cross sections, one needs to describe the ejected electron with a continuum wavefunction with appropriate Coulomb asymptotic conditions. Making a number of initial approximations, many different theoretical/numerical methods have been proposed over the years. However, depending on the complexity of the molecule, agreement among them is not uniform and many features of the experimental data are not so well reproduced. This is illustrated through a number of examples. In order to have a global theoretical overview, we present a survey of most of the methods available in the literature, indicating their application to different molecules. Within a Born-Oppenheimer, one-center expansion and single active electron approximation, we then introduce a Sturmian approach to describe photoionization of molecular targets. The method is based on the use of generalized Sturmian functions for which correct boundary conditions can be chosen. This property makes the method computationally efficient, as illustrated with results for H2O, NH3, and CH4. © 2016 Elsevier Inc.

Registro:

Documento: Artículo
Título:A Sturmian Approach to Photoionization of Molecules
Autor:Granados-Castro, C.M.; Ancarani, L.U.; Gasaneo, G.; Mitnik, D.M.; Hoggan P.E.; Ozdogan T.
Filiación:Equipe TMS, UMR CNRS 7565, ICPM, Université de Lorraine, Metz, 57078, France
Departamento de Física, Universidad Nacional del Sur, Buenos Aires, Bahía Blanca, 8000, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas CONICET, Argentina
Instituto de Astronomía y Física del Espacio (IAFE) and Departamento de Física, Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina
Palabras clave:Cross sections; Generalized Sturmian functions; Photoionization molecules; Theoretical methods
Año:2016
Volumen:73
Página de inicio:3
Página de fin:57
DOI: http://dx.doi.org/10.1016/bs.aiq.2015.06.002
Título revista:Electron Correlation in Molecules ? ab initio Beyond Gaussian Quantum Chemistry, 2016
Título revista abreviado:Adv. Quantum Chem.
ISSN:00653276
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00653276_v73_n_p3_GranadosCastro

Referencias:

  • Padial, N.T., Collins, L.A., Schneider, B.I., Photoionization of Ground-State Molecular Carbon C2 (1985) Astrophys. J., 298, p. 369
  • Liedahl, D.A., Paerels, F., Photoionization-Driven X-Ray Line Emission in Cygnus X-3 (1996) Astrophys. J., 468, p. L33
  • Bautista, M.A., Romano, P., Pradhan, A.K., Resonance-Averaged Photoionization Cross Sections for Astrophysical Models (1998) Astrophys. J. Suppl. Ser., 118, p. 259
  • Dopita, M.A., Meatheringham, S.J., Photoionization Modeling of Magellanic Cloud Planetary Nebulae. I (1991) Astrophys. J., 367, p. 115
  • García-Segura, G., Langer, N., Rozyczka, M., Franco, J., Shaping Bipolar and Elliptical Planetary Nebulae: Effects of Stellar Rotation, Photoionization Heating, and Magnetic Fields (1999) Astrophys. J., 517, p. 767
  • Monteiro, H., Schwarz, H.E., Gruenwald, R., Heathcote, S., Three-Dimensional Photoionization Structure and Distances of Planetary Nebulae. I. NGC 6369 (2004) Astrophys. J., 609, p. 194
  • Mallard, G., Miller, J.H., Smyth, K.C., Resonantly Enhanced Two-Photon Photoionization of NO in an Atmospheric Flame (1982) J. Chem. Phys., 76, p. 3483
  • Robb, D.B., Blades, M.W., State-of-the-Art in Atmospheric Pressure Photoionization for LC/MS (2008) Anal. Chim. Acta, 627, p. 34
  • Levine, J.S., Javan, A., Observation of Laser Oscillation in a 1-atm CO2-N2-He Laser Pumped by an Electrically Heated Plasma Generated Via Photoionization (1973) Appl. Phys. Lett., 22, p. 55
  • Killian, T.C., Kulin, S., Bergeson, S.D., Orozco, L.A., Orzel, C., Rolston, S.L., Creation of an Ultracold Neutral Plasma (1999) Phys. Rev. Lett., 83, p. 4776
  • Amusia, M.Y., Baltenkov, A.S., Effect of Plasma Oscillations of C60 Collectivized Electrons on Photoionization of Endohedral Noble-Gas Atoms (2006) Phys. Rev. A., 73, p. 062723
  • Hubbell, J.H., Review of Photon Interaction Cross Section Data in the Medical and Biological Context (1999) Phys. Med. Biol., 44, p. R1
  • Stepanek, J., Blattmann, H., Laissue, J.A., Lyubimova, N., Di Michiel, M., Slatkin, D.N., Physics Study of Microbeam Radiation Therapy with PSI-Version of Monte Carlo Code GEANT as a New Computational Tool (2000) Med. Phys., 27, p. 1664
  • Horsley, J.A., Stöhr, J., Hitchcock, A.P., Newbury, D.C., Johnson, A.L., Sette, F., Resonances in the K Shell Excitation Spectra of Benzene and Pyridine: Gas Phase, Solid, and Chemisorbed States (1985) J. Chem. Phys., 83, p. 6099
  • Piancastelli, M.N., Lindle, D.W., Ferrett, T.A., Shirley, D.A., The Relationship Between Shape Resonances and Bond Lengths (1987) J. Chem. Phys., 86, p. 2765
  • Sheehy, J.A., Gil, T.J., Winstead, C.L., Farren, R.E., Langhoff, P.W., Correlation of Molecular Valence- and K-shell Photoionization Resonances with Bond Lengths (1989) J. Chem. Phys., 91, p. 1796
  • Cassuto, A., Mane, M., Jupille, J., Ethylene Monolayer and Multilayer on Pt(111) Below 52 K: Determination of Bond Lengths by Near-Edge X-ray Fine Structure (1991) Surf. Sci. Lett., 249, p. 8
  • Tonner, B.P., Kao, C.M., Plummer, E.W., Caves, T.C., Messmer, R.P., Salaneck, W.R., Intermolecular Screening in Core-Level Photoemission from the Nitric-Oxide Dimer (1983) Phys. Rev. Lett., 51, p. 1378
  • Stöhr, J., Outka, D.A., Baberschke, K., Arvanitis, D., Horsley, J.A., Identification of CH Resonances in the K-shell Excitation Spectra of Gas-Phase, Chemisorbed, and Polymeric Hydrocarbons (1987) Phys. Rev. B, 36, p. 2976
  • Solomon, J.L., Madix, R.J., Stöhr, J., π Bonded Intermediates in Alcohol Oxidation: Orientations of Allyloxy and Propargyloxy on Ag(110) by Near Edge X-Ray Absorption Fine Structure (1988) J. Chem. Phys., 89, p. 5316
  • Liu, A.C., Stöhr, J., Friend, C.M., Madix, R.J., A Critical Interpretation of the Near-Edge X-ray Absorption Fine Structure of Chemisorbed Benzene (1990) Surf. Sci., 235, p. 107
  • Gasaneo, G., Ancarani, L.U., Mitnik, D.M., Randazzo, J.M., Frapiccini, A.L., Colavecchia, F.D., Three-Body Coulomb Problems with Generalized Sturmian Functions (2013) Adv. Quantum Chem., 67, p. 153
  • Mitnik, D.M., Colavecchia, F.D., Gasaneo, G., Randazzo, J.M., Computational Methods for Generalized Sturmians basis (2011) Comp. Phys. Comm., 182 (5), p. 1145
  • Ambrosio, M.J., Colavecchia, F.D., Gasaneo, G., Mitnik, D.M., Ancarani, L.U., Double Ionization of Helium by Fast Electrons with the Generalized Sturmian Functions Method (2015) J. Phys. B: At. Mol. Opt. Phys., 48, p. 055204
  • Randazzo, J.M., Mitnik, D., Gasaneo, G., Ancarani, L.U., Colavecchia, F.D., Double photoionization of helium: a generalized Sturmian approach (2015) Eur. J. Phys. D, 69, p. 189
  • Messiah, A., (1972) Quantum Mechanics, , North-Holland, Amsterdam
  • Sanz-Vicario, J., Bachau, H., Martín, F., Time-Dependent Theoretical Description of Molecular Autoionization Produced by Femtosecond xuv Laser Pulses (2006) Phys. Rev. A, 73, p. 033410
  • Sansone, G., Kelkensberg, F., Pérez-Torres, J.F., Morales, F., Kling, M.F., Siu, W., Ghafur, O., Vrakking, M.J.J., Electron Localization Following Attosecond Molecular Photoionization (2010) Nature, 465, p. 763
  • Fernández, J., Martín, F., Electron and Ion Angular Distributions in Resonant Dissociative Photoionization of H2 and D2 Using Linearly Polarized Light (2009) New J. Phys., 11, p. 043020
  • Chandra, N., Photoelectron Spectroscopic Studies of Polyatomic Molecules: I. Theory (1987) J. Phys. B: At. Mol. Phys., 20, p. 3405
  • Edmonds, A.R., (1957) Angular Momentum in Quantum Mechanics, , Princeton University Press, Princeton, NJ
  • Chung, Y.M., Lee, E.M., Masuoka, T., Samson, J.A.R., Dissociative Photoionization of H2 from 18 to 124 eV (1993) J. Chem. Phys., 99, p. 885
  • Kelly, H.P., The Photoionization Cross Section for H2 from Threshold to 30 eV (1973) Chem. Phys. Lett., 20, p. 547
  • Sanz-Vicario, J., Palacios, A., Cardona, J., Bachau, H., Martín, F., Ab Initio Time-Dependent Method to Study the Hydrogen Molecule Exposed to Intense Ultrashort Laser Pulses (2007) J. Electron Spectros. Relat. Phenom., 161, p. 182
  • Hilton, P.R., Nordholm, S., Hush, N.S., Ground-State Inversion Method Applied to Calculation of Molecular Photoionization Cross-Sections by Atomic Extrapolation: Interference Effects at Low Energies (1980) J. Electron Spectros. Relat. Phenom., 18, p. 101
  • Martín, P.H.S., Rescigno, T.N., McKoy, V., Henneker, W.H., Photoionization Cross Sections for H2 in the Random Phase Approximation with a Square-Integrable Basis (1974) Chem. Phys. Lett., 29, p. 496
  • Raşeev, G., Variational Calculation of the Logarithmic Derivative of the Wavefunction: The Electronic Autoionisation Region in Photoionisation of H2 (1985) J. Phys. B: At. Mol. Phys., 18, p. 423
  • Plummer, E.W., Gustafsson, T., Gudat, W., Eastman, D.E., Partial Photoionization Cross Sections of N2 and CO Using Synchrotron Radiation (1977) Phys. Rev. A, 15, p. 2339
  • Stratmann, R.E., Bandarage, G., Lucchese, R.R., Electron-Correlation Effects in the Photoionization of N2 (1995) Phys. Rev. A, 51, p. 3756
  • Levine, Z.H., Soven, P., Time-Dependent Local-Density Theory of Dielectric Effects in Small Molecules (1984) Phys. Rev. A, 29, p. 625
  • Davenport, J., Ultraviolet Photoionization Cross Sections for N2 and CO (1976) Phys. Rev. Lett., 36, p. 945
  • Stener, M., Decleva, P., Lisini, A., Molecular Photoionization Cross Sections by the Local Density LCAO Stieltjes Imaging Approach (1995) J. Electron Spectrosc. Relat. Phenom., 74, p. 29
  • Lucchese, R., Raseev, G., McKoy, V., Studies of Differential and Total Photoionization Cross Sections of Molecular Nitrogen (1982) Phys. Rev. A, 25, p. 2572
  • Brion, C., Tan, K., Partial Oscillator Strengths for the Photoionization of N2O and CO2 (20-60 eV) (1978) Chem. Phys., 34, p. 141
  • Kilcoyne, D.A.L., Nordholm, S., Hush, N.S., An Analysis of Photoionisation Cross Sections for Carbon Monoxide and Dioxide and Nitrous Oxide by Diffraction Theory (1986) Chem. Phys., 107, p. 225
  • Lucchese, R., McKoy, V., Studies of Differential and Total Photoionization Cross Sections of Carbon Dioxide (1982) Phys. Rev. A, 26, p. 1406
  • Harvey, A.G., Brambila, D.S., Morales, F., Smirnova, O., An R-Matrix Approach to Electron-Photon-Molecule Collisions: Photoelectron Angular Distributions from Aligned Molecules (2014) J. Phys. B: At. Mol. Opt. Phys., 47, p. 215005
  • Carlson, T.A., Gerard, P., Krause, M.O., Grimm, F.A., Pullen, B.P., Photoelectron Dynamics of the Valence Shells of Benzene as a Function of Photon Energy (1987) J. Chem. Phys., 86, p. 6918
  • Venuti, M., Stener, M., Decleva, P., Valence Photoionization of C6H6 by the B-Spline One-Centre Expansion Density Functional Method (1998) Chem. Phys., 234, p. 95
  • Stener, M., Fronzoni, G., Decleva, P., Time-Dependent Density-Functional Theory for Molecular Photoionization with Noniterative Algorithm and Multicenter B-Spline Basis Set: CS2 and C6H6 Case Studies (2005) J. Chem. Phys., 122, p. 234301
  • Kilcoyne, D.A.L., Nordholm, S., Hush, N.S., Photoionisation of Ethylene and Benzene: A Theoretical Analysis of Multicentre Diffraction Effects (1986) Chem. Phys., 107, p. 255
  • Wilhelmy, I., Ackermann, L., Görling, A., Roösch, N., Molecular Photoionization Cross Sections by the Lobatto Technique. I. Valence Photoionization (1994) J. Chem. Phys., 100, p. 2808
  • Langhoff, P.W., Aspects of Electronic Configuration Interaction in Molecular Photoionization (1983) Electron-Atom and Electron-Molecule Collisions, , Springer, New York, NY, J. Hinze (Ed.)
  • Daasch, W.R., Davidson, E.R., Hazi, A.U., Oxygen K Hole Photoionization Cross Section of CO2 (1982) J. Chem. Phys., 76, p. 6031
  • van Dishoeck, E.F., van Hemert, M.C., Dalgarno, A., Photodissociation Processes in the HCl Molecule (1982) J. Chem. Phys., 77, p. 3693
  • Decleva, P., De Alti, G., Lisini, A., Theoretical Study of the Valence Photoelectron Spectrum of Ozone: An Analysis of Correlation Effects and Configuration Interaction (CI) Model Spaces (1988) J. Chem. Phys., 89, p. 367
  • Bachau, H., Cormier, E., Decleva, P., Hansen, J.E., Martín, F., Applications of B-splines in Atomic and Molecular Physics (2001) Rep. Prog. Phys., 64, p. 1815
  • Apalategui, A., Saenz, A., Multiphoton Ionization of the Hydrogen Molecule H2 (2002) J. Phys. B: At. Mol. Opt. Phys., 35, p. 1909
  • Vanne, Y.V., Saenz, A., Numerical Treatment of Diatomic Two-Electron Molecules Using a B-Spline Based CI Method (2004) J. Phys. B: At. Mol. Opt. Phys., 37, p. 4101
  • Fojón, O.A., Fernández, J., Palacios, A., Rivarola, R.D., Martín, F., Interferences Effects in H2 Photoionization at High Energies (2004) J. Phys. B: At. Mol. Opt. Phys., 37, p. 3035
  • Dowek, D., Pérez-Torres, J.F., Picard, Y.J., Billaud, P., Elkharrat, C., Houver, J.C., Sanz-Vicario, J.L., Martín, F., Circular Dichroism in Photoionization of H2 (2010) Phys. Rev. Lett., 104, p. 233003
  • Klamroth, T., Laser-Driven Electron Transfer through Metal-Insulator-Metal Contacts: Time-Dependent Configuration Interaction Singles Calculations for a Jellium Model (2003) Phys. Rev. B, 68, p. 245421
  • Klinkusch, S., Saalfrank, P., Klamroth, T., Laser-Induced Electron Dynamics Including Photoionization: A Heuristic Model within Time-Dependent Configuration Interaction Theory (2009) J. Chem. Phys., 131, p. 114304
  • Sonk, J.A., Schlegel, H.B., TD-CI Simulation of the Electronic Optical Response of Molecules in Intense Fields II: Comparison of DFT Functionals and EOM-CCSD (2011) J. Phys. Chem. A, 115, p. 11832
  • Nesbet, R.K., (1979) Variational Methods in Electron-Atom Scattering Theory, , Plenum, New York, NY
  • Stratmann, R.E., Lucchese, R.R., A Graphical Unitary Group Approach to Study Multiplet Specific Multichannel Electron Correlation Effects in the Photoionization of O2 (1995) J. Chem. Phys., 102, p. 8493
  • Dalgarno, A., The Photo-Ionization Cross Section of Methane (1952) Proc. Phys. Soc. A, 65, p. 663
  • Schirmer, J., Cederbaum, L., Domcke, W., von Niessen, W., Strong Correlation Effects in Inner Valence Ionization of N2 AND CO (1977) Chem. Phys., 26, p. 149
  • Larkins, F.P., Richards, J.A., Photoionisation and Auger Electron Emission from the Lithium Molecule: Calculations Using Multicentre Numerical Continuum Functions (1986) Aust. J. Phys., 39, p. 809
  • Saito, N., Fanis, A.D., Kubozuka, K., Machida, M., Takahashi, M., Yoshida, H., Suzuki, I.H., Ueda, K., Carbon K-shell Photoelectron Angular Distribution from Fixed-In-Space CO2 Molecules (2003) J. Phys. B: At. Mol. Opt. Phys., 36, p. L25
  • Saito, N., Toffoli, D., Lucchese, R.R., Nagoshi, M., De Fanis, A., Tamenori, Y., Oura, M., Ueda, K., Symmetry- and Multiplet-Resolved N 1s Photoionization Cross Sections of the NO2 Molecule (2004) Phys. Rev. A, 70, p. 062724
  • Semenov, S.K., Cherepkov, N.A., Jahnke, T., Dörner, R., Theoretical Study of Vibrationally Resolved Photoionization for the C K-Shell of the CO Molecule (2004) J. Phys. B: At. Mol. Opt. Phys., 37, p. 1331
  • Ågren, H., Carravetta, V., Vahtras, O., Pettersson, L.G.M., Direct SCF Direct Static-Exchange Calculations of Electronic Spectra (1997) Theor. Chem. Acc., 97, p. 14
  • Nest, M., Klamroth, T., Saalfrank, P., The Multiconfiguration Time-Dependent Hartree-Fock Method for Quantum Chemical Calculations (2005) J. Chem. Phys., 122, p. 124102
  • Alon, O.E., Streltsov, A.I., Cederbaum, L.S., Many-Body Theory for Systems with Particle Conversion: Extending the Multiconfigurational Time-Dependent Hartree Method (2009) Phys. Rev. A, 79, p. 022503
  • Kato, T., Kono, H., Time-Dependent Multiconfiguration Theory for Ultrafast Electronic Dynamics of Molecules in an Intense Laser Field: A Description in Terms of Numerical Orbital Functions (2008) J. Chem. Phys., 128, p. 184102
  • Haxton, D.J., Lawler, K.V., McCurdy, C.W., Multiconfiguration Time-Dependent Hartree-Fock Treatment of Electronic and Nuclear Dynamics in Diatomic Molecules (2011) Phys. Rev. A, 83, p. 063416
  • Haxton, D.J., Lawler, K.V., McCurdy, C.W., Single Photoionization of Be and HF Using the Multiconfiguration Time-Dependent Hartree-Fock Method (2012) Phys. Rev. A, 86, p. 013406
  • Hohenberg, P., Kohn, W., Inhomogeneous Electron Gas (1964) Phys. Rev., 136, p. B864
  • Kohn, W., Sham, L.J., Self-Consistent Equations including Exchange and Correlation Effects (1965) Phys. Rev., 140, p. A1133
  • van Leeuwen, R., Baerends, E.J., Exchange-Correlation Potential with Correct Asymptotic Behavior (1994) Phys. Rev. A, 49, p. 2421
  • Görling, A., New KS Method for Molecules Based on an Exchange Charge Density Generating the Exact Local KS Exchange Potential (1999) Phys. Rev. Lett., 83, p. 5459
  • Stener, M., Decleva, P., Photoionization of First and Second Row Hydrides by the B-Spline One-Centre Expansion Density Functional Method (1998) J. Electron Spectros. Relat. Phenom., 94, p. 195
  • Stener, M., Decleva, P., Photoionization of CH4, SiH4, BH3 and AlH3 by the B-Spline One-Centre Expansion Density Functional Method (1999) J. Electron Spectros. Relat. Phenom., 104, p. 135
  • Toffoli, D., Stener, M., Fronzoni, G., Decleva, P., Convergence of the Multicenter B-Spline DFT Approach for the Continuum (2002) Chem. Phys., 276, p. 25
  • Woon, D.E., Park, J., Photoionization of Benzene and Small Polycyclic Aromatic Hydrocarbons in Ultravioletprocessed Astrophysical Ices: A Computational Study (2004) Astrophys. J., 607, p. 342
  • Stranges, S., Turchini, S., Alagia, M., Alberti, G., Contini, G., Decleva, P., Fronzoni, G., Prosperi, T., Valence Photoionization Dynamics in Circular Dichroism of Chiral Free Molecules: The Methyl-Oxirane (2005) J. Chem. Phys., 122, p. 244303
  • Toffoli, D., Decleva, P., Gianturco, F.A., Lucchese, R.R., Density Functional Theory for the Photoionization Dynamics of Uracil (2007) J. Chem. Phys., 127, p. 234317
  • Runge, E., Gross, E.K.U., Density-Functional Theory for Time-Dependent Systems (1984) Phys. Rev. Lett., 52, p. 997
  • Stener, M., Decleva, P., Time-Dependent Density Functional Calculations of Molecular Photoionization Cross Sections: N2 and PH3 (2000) J. Chem. Phys., 112, p. 10871
  • Zangwill, A., Soven, P., Density-Functional Approach to Local-Field Effects in Finite Systems: Photoabsorption in the Rare Gases (1980) Phys. Rev. A, 21, p. 1561
  • Stener, M., Fronzoni, G., Toffoli, D., Decleva, P., Time Dependent Density Functional Photoionization of CH4, NH3, H2O and HF (2002) Chem. Phys., 282, p. 337
  • Stener, M., Decleva, P., Cacelli, I., Moccia, R., Montuoro, R., Response Function Study of CO Photoionization: Ab Initio SCF and Density Functional Results (2001) Chem. Phys., 272, p. 15
  • Stener, M., Photoionization of Oriented Molecules: A Time Dependent Density Functional Approach (2002) Chem. Phys. Lett., 356, p. 153
  • Fronzoni, G., Stener, M., Decleva, P., Valence and Core Photoionization Dynamics of Acetylene by TD-DFT Continuum Approach (2004) Chem. Phys., 298, p. 141
  • Toffoli, D., Stener, M., Fronzoni, G., Decleva, P., Photoionization Cross Section and Angular Distribution Calculations of Carbon Tetrafluoride (2006) J. Chem. Phys., 124, p. 214313
  • Patanen, M., Kooser, K., Argenti, L., Ayuso, D., Kimura, M., Mondal, S., Plésiat, E., Martín, F., Vibrationally Resolved C 1s Photoionization Cross Section of CF4 (2014) J. Phys. B: At. Mol. Opt. Phys., 47, p. 124032
  • Holland, D.M.P., Potts, A.W., Karlsson, L., Stener, M., Decleva, P., A Study of the Valence Shell Photoionisation Dynamics of Pyrimidine and Pyrazine (2011) Chem. Phys., 390, p. 25
  • Russakoff, A., Bubin, S., Xie, X., Erattupuzha, S., Kitzler, M., Time-Dependent Density-Functional Study of the Alignment-Dependent Ionization of Acetylene and Ethylene by Strong Laser Pulses (2015) Phys. Rev. A, 91, p. 023422
  • Madjet, M.E., Chakraborty, H.S., Rost, J.M., Manson, S.T., Photoionization of C60: A Model Study (2008) J. Phys. B: At. Mol. Opt. Phys., 41, p. 105101
  • Stener, M., Toffoli, D., Fronzoni, G., Decleva, P., Recent Advances in Molecular Photoionization by Density Functional Theory Based Approaches (2007) Theor. Chem. Acc., 117, p. 943
  • Plésiat, E., Decleva, P., Martín, F., Vibrationally Resolved Photoelectron Angular Distributions from Randomly Oriented and Fixed-in-Space N2 and CO Molecules (2012) J. Phys. B: At. Mol. Opt. Phys., 45, p. 194008
  • Kukk, E., Ayuso, D., Thomas, T.D., Decleva, P., Patanen, M., Argenti, L., Plésiat, E., Ueda, K., Effects of Molecular Potential and Geometry on Atomic Core-Level Photoemission over an Extended Energy Range: The Case Study of the CO Molecule (2013) Phys. Rev. A, 88, p. 033412
  • Reinhardt, W.P., Complex Coordinates in the Theory of Atomic and Molecular Structure and Dynamics (1982) Ann. Rev. Phys. Chem., 33, p. 223
  • Moiseyev, N., Quantum theory of Resonances: Calculating Energies, Widths and Cross-Sections by Complex Scaling (1998) Phys. Rep., 302, p. 212
  • Nicolaides, C.A., Beck, D.R., The Variational Calculation of Energies and Widths of Resonances (1978) Phys. Lett. A, 65, p. 11
  • Simon, B., The Definition of Molecular Resonance Curves by the Method of Exterior Complex Scaling (1979) Phys. Lett. A, 71, p. 211
  • McCurdy, C.W., Martín, F., Implementation of Exterior Complex Scaling in B-Splines to Solve Atomic and Molecular Collision Problems (2004) J. Phys. B: At. Mol. Opt. Phys., 37, p. 917
  • McCurdy, C.W., Rescigno, T.N., Complex-Basis-Function Calculations of Resolvent Matrix Elements: Molecular Photoionization (1980) Phys. Rev. A, 21, p. 1499
  • Rescigno, T.N., McCurdy, C.W., Locally Complex Distortions of the Energy Spectrum in the Calculation of Scattering Amplitudes and Photoionization Cross Sections (1985) Phys. Rev. A, 31, p. 624
  • Vanroose, W., Martín, F., Rescigno, T.N., McCurdy, C.W., Nonperturbative Theory of Double Photoionization of the Hydrogen Molecule (2004) Phys. Rev. A, 70
  • Vanroose, W., Horner, D.A., Martín, F., Rescigno, T.N., McCurdy, C.W., Double Photoionization of Aligned Molecular Hydrogen (2006) Phys. Rev. A, 74, p. 052702
  • Rescigno, T.N., Vanroose, W., Horner, D.A., Martín, F., McCurdy, C.W., First Principles Study of Double Photoionization of H2 Using Exterior Complex Scaling (2007) J. Electron Spectros. Relat. Phenom., 161, p. 85
  • Light, J.C., Hamilton, I.P., Lill, J.V., Generalized Discrete Variable Approximation in Quantum Mechanics (1985) J. Chem. Phys., 82, p. 1400
  • Tao, L., McCurdy, C.W., Rescigno, T.N., Grid-Based Methods for Diatomic Quantum Scattering Problems: A Finite-Element Discrete-Variable Representation in Prolate Spheroidal Coordinates (2009) Phys. Rev. A, 79, p. 012719
  • Tao, L., McCurdy, C.W., Rescigno, T.N., Grid-Based Methods for Diatomic Quantum Scattering Problems. II. Time-Dependent Treatment of Single- and Two-Photon Ionization of H2+ (2009) Phys. Rev. A, 80, p. 013402
  • Tao, L., McCurdy, C.W., Rescigno, T.N., Grid-Based Methods for Diatomic Quantum Scattering Problems. III. Double Photoionization of Molecular Hydrogen in Prolate Spheroidal Coordinates (2010) Phys. Rev. A, 82, p. 023423
  • Yu, C.-H., Pitzer, R.M., McCurdy, C.W., Molecular Photoionization Cross Sections by the Complex-Basis- Function Method (1985) Phys. Rev. A, 32, p. 2134
  • Morita, M., Yabushita, S., Photoionization Cross Sections of H2+ and H2 with Complex Gaussian-Type Basis Functions Optimized for the Frequency-Dependent Polarizabilities (2008) J. Comput. Chem., 29, p. 2471
  • Collins, L.A., Schneider, B.I., Linear-Algebraic Approach to Electron-Molecule Collisions: General Formulation (1981) Phys. Rev. A, 24, p. 2387
  • Collins, L.A., Schneider, B.I., 2. The Linear Algebraic Method for Electron-Molecule Collisions (1995) Computational Methods for Electron-Molecule Collisions, , Springer, New York, NY, M.W. Huo, F.A. Gianturco (Eds.)
  • Collins, L., Schneider, B., Molecular Photoionization in the Linear Algebraic Approach: H2, N2, NO, and CO2 (1984) Phys. Rev. A, 29, p. 1695
  • Schneider, B.I., Collins, L.A., Ab Initio Optical Potentials Applied to Low-Energy e-H2 and e-N2 Collisions in the Linear-Algebraic Approach (1983) Phys. Rev. A, 27, p. 2847
  • Agassi, D., Gal, A., Scattering from Non-Overlapping Potentials. I. General Formulation (1973) Ann. Phys. (N.Y.), 75, p. 56
  • Korringa, J., On the Calculation of the Energy of a Bloch Wave in a Metal (1947) Physica, 13, p. 392
  • Dill, D., Dehmer, J.L., Electron-Molecule Scattering and Molecular Photoionization Using the Multiple-Scattering Method (1974) J. Chem. Phys., 61, p. 692
  • Johnson, K.H., Scattered-Wave Theory of the Chemical Bond (1973) Advances in Quantum Chemistry, 7. , Academic, New York, NY, P.O. Lödwin (Ed.)
  • Slater, J.C., Johnson, K.H., Self-Consistent-Field Xα Cluster Method for Polyatomic Molecules and Solids (1972) Phys. Rev. B, 5, p. 844
  • Davenport, J.W., Multiple Scattering Theory of Photoemission (1977) Int. J. Quantum Chem., 12, p. 89
  • Dehmer, J.L., Dill, D., Molecular Effects on Inner-Shell Photoabsorption. K-Shell Spectrum of N2 (1976) J. Chem. Phys., 65, pp. 5327-5334
  • Grimm, F.A., Calculations of the Partial Differential Photoionization Cross Sections for the Valence Bands of Ethylene (1983) Chem. Phys., 81, p. 315
  • Grimm, F.A., Carlson, T.A., Dress, W.B., Agron, P., Thomson, J.O., Davenport, J.W., Use of the Multiple-Scattering Method for Calculating the Asymmetry Parameter in the Angle-Resolved Photoelectron Spectroscopy of N2, CO, CO2, COS, and CS2 (1980) J. Chem. Phys., 72, p. 3041
  • Rosi, M., Sgamellotti, A., Tarantelli, F., Andreev, V.A., Gofman, M., Nefedov, V., Theoretical Investigation of the Energy Dependence of Photoionization Cross-Sections and Angular Distributions of Photoemission of CH4 and CF4 (1986) J. Electron Spectros. Relat. Phenom., 41, p. 439
  • Tse, J.S., Liu, Z.F., Bozek, J.D., Bancroft, G.M., Multiple-Scattering Xα Study of the Silicon and Chlorine Core-Level Photoabsorption Spectra of SiCl4 (1989) Phys. Rev. A, 39, p. 1791
  • Ishikawa, H., Fujima, K., Adachi, H., Miyauchi, E., Fujii, T., Calculation of Electronic Structure and Photoabsorption Spectra of Monosilane Molecules SiH4, SiF4, and SiCl4 (1991) J. Chem. Phys., 94, p. 6740
  • Powis, I., Continuum MS-Xα Calculations for Core and Outer Valence Shell Photoionization of PF3 (1993) Chem. Phys. Lett., 215, p. 269
  • Powis, I., A Theoretical CMS-Xα Treatment of CH3I Photoionization Dynamics: Outer Valence Shell and Iodine 4d Levels (1995) Chem. Phys., 201, p. 189
  • Powis, I., Oriented Molecule Photoelectron Angular Distributions in the Vicinity of a Photoionization Shape Resonance: Continuum Multiple Scattering- Xα Calculations for Valence Ionization of CF3Cl (1997) J. Chem. Phys., 106, p. 5013
  • Jürgensen, A., Cavell, R.G., Valence Shell Photoionization Energies and Cross-Sections of NF3 and PF3 (2003) J. Electron Spectros. Relat. Phenom., 128, p. 245
  • Ellison, F.O., Theoretical Equations for Photoionization Cross Sections of Polyatomic Molecules in Plane-Wave and Orthogonalized Plane-Wave Approximations (1974) J. Chem. Phys., 61, p. 507
  • Kaplan, I.G., Markin, A.P., Calculation of Photoionization Cross Sections of Molecular Systems. I. Equations for Photoionization Cross Sections in AMO LCAO Approximation (1968) Opt. Spectrosc., 24, p. 475
  • Kaplan, I.G., Markin, A.P., Calculation of Photionization Cross Sections of Molecular Systems. II. Ethylene, Butadiene and Benzene (1968) Opt. Spectrosc., 25, p. 275
  • Lohr, L.L., Robin, M.B., Theoretical Study of Photoionization Cross Sections for π-Electron Systems (1970) J. Am. Chem. Soc., 92, p. 7241
  • Thiel, W., Schweig, A., Photoionization Cross Sections in the Valence Electron Approximation. I. Linear Molecules (1971) Chem. Phys. Lett., 12, p. 49
  • Schweig, A., Thiel, W., Photoionization Cross Sections: He I and He II Photoelectron Spectra of Saturated Three-Membered Rings (1973) Chem. Phys. Lett., 21, p. 541
  • Rabalais, J.W., Debies, T.P., Berkosky, J.L., Huang, J.J., Ellison, F.O., Calculated Photoionization Cross Sections and Relative Experimental Photoionization Intensities for a Selection of Small Molecules (1974) J. Chem. Phys., 61, p. 516
  • Dewar, M.J.S., Komornicki, A., Thiel, W., Schweig, A., Calculation of Photoionization Cross Sections Using Ab-initio Wavefunctions and the Plane Wave Approximation (1975) Chem. Phys. Lett., 31, p. 286
  • Huang, J.T.J., Ellison, F.O., Angular Asymmetry Parameters of Photoelectrons from H2, N2 and CH4; an Extended Orthogonalized Plane-Wave Calculation (1975) Chem. Phys. Lett., 32, p. 196
  • Beerlage, M.J.M., Feil, D., A Modified Plane Wave Model for Calculating UV Photo-Ionization Cross-Sections (1977) J. Electron Spectros. Relat. Phenom., 12, p. 161
  • Schweig, A., Thiel, W., Photoionization Cross Sections: Interpretation of Band Intensities in He I and He II Photoelectron Spectra (1974) J. Electron Spectros. Relat. Phenom., 3, p. 27
  • Hilton, P.R., Nordholm, S., Hush, N.S., Molecular Photoionization Cross Sections Calculated by an Effective Plane Wave Method (1976) Chem. Phys., 15, p. 345
  • Deleuze, M., Pickup, B.T., Delhalle, J., Plane Wave and Orthogonalized Plane Wave Many-Body Green's Function Calculations of Photoionization Intensities (1994) Mol. Phys., 83, p. 655
  • Hilton, P.R., Nordholm, S., Hush, N.S., The Ground State Inversion Potential Method: Application to the Calculation of Photoionization Cross Sections (1977) J. Chem. Phys., 67, p. 5213
  • Kilcoyne, D.A.L., McCarthy, C., Nordholm, S., Hush, N.S., Hilton, P.R., An Atomic Diffraction Theory of Molecular Photoionization Cross Sections (1985) J. Electron Spectros. Relat. Phenom., 36, pp. 153-185
  • Hilton, P.R., Hordholm, S., Hush, N.S., Photoionization Cross Section of Water by an Atomic Extrapolation Method (1979) Chem. Phys. Lett., 64, p. 515
  • Kilcoyne, D.A.L., Nordholm, S., Hush, N.S., Diffraction Analysis of the Photoionisation Cross Sections of Water, Ammonia and Methane (1986) Chem. Phys., 107, p. 213
  • (1993) Atomic and Molecular Processes, an R-Matrix Approach, , Institute of Physics Publishing, Bristol, P.G. Burke, K.A. Berrington (Eds.)
  • Bartschat, K., The R-matrix with Pseudo-States Method: Theory and Applications to Electron Scattering and Photoionization (1998) Comput. Phys. Commun., 114, p. 168
  • Schneider, B.I., 8. An R-Matrix Approach to Electron-Molecule Collisions (1995) Computational Methods for Electron-Molecule Collisions, , Springer, New York, NY, M.W. Huo, F.A. Gianturco (Eds.)
  • Noble, C.J., 14. R-Matrix for Intermediate Energy Scattering and Photoionization (1995) Computational Methods for Electron-Molecule Collisions, , Springer, New York, NY, M.W. Huo, F.A. Gianturco (Eds.)
  • Schneider, B.I., LeDourneuf, M., Burke, P.G., Theory of Vibrational Excitation and Dissociative Attachment: An R-matrix Approach (1979) J. Phys. B: At. Mol. Phys., 12, p. L365
  • Burke, P.G., Seaton, M.J., The Vicinity of an R-Matrix Pole (1984) J. Phys. B: At. Mol. Phys., 17, p. L683
  • Seaton, M.J., Use of the R Matrix Method for Bound-State Calculations. I. General Theory (1985) J. Phys. B: At. Mol. Phys., 18, p. 2111
  • Seaton, M.J., Outer-Region Contributions to Radiative Transition Probabilities (1986) J. Phys. B: At. Mol. Phys., 19, p. 2601
  • Tennyson, J., Noble, C., Burke, P., Continuum States of the Hydrogen Molecule With the R-Matrix Method (1986) Int. J. Quantum Chem., 29, p. 1033
  • Tennyson, J., Fully Vibrationally Resolved Photoionization of H2 and D2 (1987) J. Phys. B: At. Mol. Phys., 20, p. L375
  • Joachain, C.J., R-matrix-Floquet Theory of Multiphoton Processes: Concepts, Results and Perspectives (2007) J. Mod. Opt., 54, p. 1859
  • Burke, P.G., Colgan, J., Glass, D.H., Higgins, K., R-matrix-Floquet Theory of Molecular Multiphoton Processes (2000) J. Phys. B: At. Mol. Opt. Phys., 33, p. 143
  • Colgan, J., Glass, D.H., Higgins, K., Burke, P.G., R-matrix Floquet Theory of Molecular Multiphoton Processes: II. Multiphoton Ionization of H2 (2001) J. Phys. B: At. Mol. Opt. Phys., 34, p. 2089
  • Saenz, A., Photoabsorption and Photoionization of HeH+ (2003) Phys. Rev. A, 67, p. 033409
  • Tashiro, M., Application of the R-Matrix Method to Photoionization of Molecules (2010) J. Chem. Phys., 132, p. 134306
  • Amusia, M.Y., Cherepkov, N.A., Many-Electron Correlations in the Scattering Processes (1975) Case Stud. At. Phys., 5, p. 47
  • Amusia, M.Y., Theory of Photoionization: VUV and Soft X-Ray Frequency Region (1996) VUV and Soft X-Ray Photoionization, , Plenum, New York, NY, U. Becker, D.A. Shirley (Eds.)
  • Rowe, D., Equations-of-Motion Method and the Extended Shell Model (1968) Rev. Mod. Phys., 40, p. 153
  • Yabushita, S., McCurdy, C., Rescigno, T., Complex-Basis-Function Treatment of Photoionization in the Random-Phase Approximation (1987) Phys. Rev. A, 36, p. 3146
  • Semenov, S., Cherepkov, N., Fecher, G., Schönhense, G., Generalization of the Atomic Random-Phase-Approximation Method for Diatomic Molecules: N2 Photoionization Cross-Section Calculations (2000) Phys. Rev. A, 61, p. 032704
  • Semenov, S.K., Cherepkov, N.A., Photoionization of the H2 Molecule in the Random Phase Approximation (2003) J. Phys. B: At. Mol. Opt. Phys., 36, p. 1409
  • Schirmer, J., Mertins, F., A New Approach to the Random Phase Approximation (1996) J. Phys. B: At. Mol. Opt. Phys., 29, p. 3559
  • Semenov, S.K., Cherepkov, N.A., Generalization of the Atomic RPA Method for Diatomic Molecules: H2 Photoionization Cross-Section Calculation (1998) Chem. Phys. Lett., 291, p. 375
  • Lucchese, R., Zurales, R., Comparison of the Random-Phase Approximation with the Multichannel Frozen-Core Hartree-Fock Approximation for the Photoionization of N2 (1991) Phys. Rev. A, 44, p. 291
  • Semenov, S., Cherepkov, N., Generalization of Atomic Random-Phase-Approximation Method for Diatomic Molecules. II. N2 K-shell Photoionization (2002) Phys. Rev. A, 66, p. 022708
  • Montuoro, R., Moccia, R., Photoionization Cross Sections Calculation with Mixed L2 Basis Set: STOs Plus B-Splines. Results for N2 and C2H2 by KM-RPA Method (2003) Chem. Phys., 293, p. 281
  • Cacelli, I., Carravetta, V., Moccia, R., Differential Photoionization Cross Section Calculations for H2S Using the Random Phase Approximation with L2 Basis Functions (1994) Chem. Phys., 184, p. 213
  • Carmona-Novillo, E., Moccia, R., Spizzo, P., Photoionization Cross Section and Asymmetry Parameter of LiH: A Mixed GTO/STOCOS L2 Basis Set Calculation (1996) Chem. Phys., 210, p. 435
  • Yasuike, T., Yabushita, S., Valence Photoionization and Autoionizing States of Acetylene Studied by the Complex Basis Function Method in the Random Phase Approximation (2000) Chem. Phys. Lett., 316, p. 257
  • Cherepkov, N., Semenov, S., Hikosaka, Y., Ito, K., Motoki, S., Yagishita, A., Manifestation of Many-Electron Correlations in Photoionization of the K Shell of N2 (2000) Phys. Rev. Lett., 84, p. 250
  • Polozkov, R.G., Ivanov, V.K., Solov'yov, A.V., Photoionization of the Fullerene Ion C60 + (2005) J. Phys. B: At. Mol. Opt. Phys., 38, p. 4341
  • Ivanov, V.K., Kashenock, G.Y., Polozkov, R.G., Solov'yov, A.V., Photoionization Cross Sections of the Fullerenes C20 and C60 Calculated in a Simple Spherical Model (2001) J. Phys. B: At. Mol. Opt. Phys., 34, p. L669
  • Cacelli, I., Carravetta, V., Moccia, R., Rizzo, A., Photoionization and Photoabsorption Cross Section Calculations in Methane, Ammonia, Water, and Hydrogen Fluoride Molecules (1988) J. Phys. Chem., 92, p. 979
  • Langhoff, P.W., Stieltjes Imaging of Atomic and Molecular Photoabsorption Profiles (1973) Chem. Phys. Lett., 22, p. 60
  • Langhoff, P.W., Stieltjes-Tchebycheff Moment-Tehory Approach to Molecular Photoionization Studies (1979) Electron-Molecule and Photon-Molecule Collisions, , Plenum, New York, NY, T. Rescigno, V. McKoy, B. Schneider (Eds.)
  • Shohat, J.A., Tamarkin, J.D., The Problem of Moments (1943) Mathematical Surveys, 1. , American Mathematical Society, Providence, RI
  • Corcoran, C.T., Langhoff, P.W., Moment-Theory Approximations for Nonnegative Spectral Densities (1977) J. Math. Phys., 18, p. 651
  • Rescigno, T.N., Bender, C.F., McKoy, B.V., Langhoff, P.W., Photoabsorption in Molecular Nitrogen: A Moment Analysis of Discrete-Basis-Set Calculations in the Static-Exchange Approximation (1978) J. Chem. Phys., 68, p. 970
  • Barsuhn, J., Nesbet, R.K., The Photoionization and Photodissociation of CH in the Vicinity of the Ionization Threshold (1978) J. Chem. Phys., 68, p. 2783
  • O'Neil, S.V., Reinhardt, W.P., Photoionization of Molecular Hydrogen (1978) J. Chem. Phys., 69, p. 2126
  • Williams, G.R.J., Langhoff, P.W., Photoabsorption in H2O: Stieltjes-Tchebycheff Calculations in the Time-Dependent Hartree-Fock Approximation (1979) Chem. Phys. Lett., 60, p. 201
  • Delaney, J.J., Saunders, V.R., Hillier, I.H., Stieltjes-Tchebycheff Calculations in the Static-Exchange Approximation of Photoexcitation and Ionisation in Water (1981) J. Phys. B: At. Mol. Phys., 14, p. 819
  • Diercksen, G.H.F., Kraemer, W.P., Rescigno, T.N., Bender, C.F., Mckoy, B.V., Langhoff, S.R., Langhoff, P.W., Theoretical Studies of Photoexcitation and Ionization in H2O (1982) J. Chem. Phys., 76, p. 1043
  • Cacelli, I., Moccia, R., Carravetta, V., Photoionisation Cross Section Calculations for H2O and NH3 by One-Center Expansion and Sticltjies Technique (1984) Chem. Phys., 90, p. 313
  • Cacelli, I., Carravetta, V., Moccia, R., Transition Probability and Photoionisation Cross Section Calculations for CH4 and HF by One-Centre Expansion and Stieltjes Technique (1985) J. Phys. B: At. Mol. Phys., 18, p. 1375
  • Cacelli, I., Carravetta, V., Moccia, R., Photoionization Cross Section Calculations of HCl by the Stieltjes Technique (1986) Mol. Phys., 59, p. 385
  • Cacelli, I., Carravetta, V., Moccia, R., H2S Photoabsorption and Photoionization Cross Sections by Stieltjes Imaging (1988) Chem. Phys., 120, p. 51
  • Görling, A., Rösch, N., Molecular Photo Cross Sections with the LCGTO-Xα Method Using Stieltjes Imaging (1990) J. Chem. Phys., 93, p. 5563
  • Orel, A.E., Rescigno, T.N., Mckoy, B.V., Langhoff, P.W., Photoexcitation and Ionization in Molecular Fluorine: Stieltjes-Tchebycheff Calculations in the Static-Exchange Approximation (1980) J. Chem. Phys., 72, p. 1265
  • Gokhberg, K., Vysotskiy, V., Cederbaum, L.S., Storchi, L., Tarantelli, F., Averbukh, V., Molecular Photoionization Cross Sections by Stieltjes-Chebyshev Moment Theory Applied to Lanczos Pseudospectra (2009) J. Chem. Phys., 130, p. 064104
  • Kohn, W., Variational Methods in Nuclear Collision Problems (1948) Phys. Rev., 74, p. 1763
  • Rescigno, T.N., McCurdy, C.W., Orel, A.E., Lengsfield, B.H., 1. The Complex Kohn Variational Method (1995) Computational Methods for Electron-Molecule Collisions, , Springer, New York, NY, M.W. Huo, F.A. Gianturco (Eds.)
  • McCurdy, C.W., Rescigno, T.N., Collisions of Electrons with Polyatomic Molecules: Electron-Methane Scattering by the Complex Kohn Variational Method (1989) Phys. Rev. A, 39, p. 4487
  • Manolopoulos, D., Wyatt, R., Quantum Scattering Via the Log Derivative Version of the Kohn Variational Principle (1988) Chem. Phys. Lett., 152, p. 23
  • Manolopoulos, D.E., Wyatt, R.E., Clary, D.C., Iterative Solution in Quantum Scattering Theory. The Log Derivative Kohn Approach (1990) J. Chem. Soc. Faraday Trans., 86, p. 1641
  • Le Rouzo, H., Raşeev, G., Finite-Volume Variational Method: First Application to Direct Molecular Photoionization (1984) Phys. Rev. A, 29, p. 1214
  • Manolopoulos, D.E., Lobatto Shape Functions (1993) Numerical Grid Methods and Their Application to Schrödinger's Equation, , Springer, The Netherlands, C. Cerjan (Ed.)
  • Rösch, N., Wilhelmy, I., Representation of Electronic Wavefunctions by Lobatto Shape Functions: Application to the Photoionization Cross Section of H2+ (1992) Chem. Phys. Lett., 189, p. 499
  • Wilhelmy, I., Rösch, N., Molecular Photoionization Cross Sections by the Lobatto Technique. II. Core Level Photionization (1994) Chem. Phys., 185, pp. 317-332
  • Orel, A.E., Rescigno, T.N., Variational Expressions for First-Order Properties involving Continuum Wave Functions (1990) Phys. Rev. A, 41, p. 1695
  • Rescigno, T., Lengsfield, B., McCurdy, C., Electronic Excitation of Formaldehyde by Low-Energy Electrons: A Theoretical Study Using the Complex Kohn variational Method (1990) Phys. Rev. A, 41, p. 2462
  • Lynch, D.L., Schneider, B.I., Molecular Photoionization Using the Complex Kohn Variational Method (1992) Phys. Rev. A, 45, p. 4494
  • Nesbet, R.K., Comparison of the R-matrix and Hulthén-Kohn methods for a model multichannel scattering problem (1981) Phys. Rev. A, 24, p. 2975
  • Rescigno, T.N., Lengsfield, B.H., Orel, A.E., Interchannel Coupling and Ground State Correlation Effects in the Photoionization of CO (1993) J. Chem. Phys., 99, p. 5097
  • Orel, A.E., Rescigno, T.N., Photoionization of Ammonia (1997) Chem. Phys. Lett., 269, p. 222
  • Jose, J., Lucchese, R.R., Rescigno, T.N., Interchannel Coupling Effects in the Valence Photoionization of SF6 (2014) J. Chem. Phys., 140, p. 204305
  • Schwinger, J., Minutes of the Meeting at Stanford University, California July 11-12, 1947 [14] (1947) Phys. Rev., 72, p. 738. , See p. 742
  • Lippmann, B.A., Schwinger, J., Variational Principles for Scattering Processes. I (1950) Phys. Rev., 79, p. 469
  • Huo, W.M., 15. The Schwinger Variational Method (1995) Computational Methods for Electron-Molecule Collisions, , Springer, New York, NY, M.W. Huo, F.A. Gianturco (Eds.)
  • Taylor, J.R., (1972) Scattering Theory: The Quantum Theory of Nonrelativistic Collisions, , Wiley, New York
  • Lucchese, R.R., McKoy, V., Application of the Schwinger variational principle to electron scattering (1979) J. Phys. B: At. Mol. Phys., 12, p. L421
  • Takatsuka, K., McKoy, V., Extension of the Schwinger variational principle beyond the Static-Exchange Approximation (1981) Phys. Rev. A, 24, p. 2473
  • Watson, D.K., McKoy, V., Discrete-Basis-Function Approach to Electron-Molecule Scattering (1979) Phys. Rev. A, 20, p. 1474
  • Lucchese, R.R., Watson, D.K., McKoy, V., Iterative Approach to the Schwinger Variational Principle for Electron-Molecule Collisions (1980) Phys. Rev. A, 22, p. 421
  • Lucchese, R., McKoy, V., Iterative Approach to the Schwinger Variational Principle Applied to ElectronMolecular-Ion Collisions (1981) Phys. Rev. A, 24, p. 770
  • Lynch, D., Lee, M.T., Lucchese, R.R., McKoy, V., Studies of the Photoionization Cross Sections of Acetylene (1984) J. Chem. Phys., 80, p. 1907
  • Natalense, A.P.P., Lucchese, R.R., Cross Section and Asymmetry Parameter Calculation for Sulfur 1s Photoionization of SF6 (1999) J. Chem. Phys., 111, p. 5344
  • Natalense, A., Brescansin, L., Lucchese, R., Cross Section and Asymmetry Parameter Calculations for the C 1s Photoionization of CH4, CF4, and CCl4 (2003) Phys. Rev. A, 68, p. 032701
  • Machado, L.E., Brescansin, L.M., Lima, M.A.P., Braunstein, M., McKoy, V., Cross Sections and Photoelectron Asymmetry Parameters for Photoionization of H2O (1990) J. Chem. Phys., 92, p. 2362
  • Machado, L.E., Lee, M.T., Brescansin, L.M., Photoionization Cross Sections and Asymmetry Parameters for Silane (1999) J. Chem. Phys., 110, p. 7228
  • Machado, A.M., Masili, M., Variationally Stable Calculations for Molecular Systems: Polarizabilities and Two-Photon Ionization Cross Section for the Hydrogen Molecule (2004) J. Chem. Phys., 120, p. 7505
  • Stephens, J.A., McKoy, V., Photoionization of the Valence Orbitals of OH (1988) J. Chem. Phys., 88, p. 1737
  • Braunstein, M., McKoy, V., Machado, L.E., Brescansin, L.M., Lima, M.A.P., Studies of the Photoionization Cross Sections of CH4 (1988) J. Chem. Phys., 89, p. 2998
  • Wells, M., Lucchese, R.R., The Inner Valence Photoionization of Acetylene (1999) J. Chem. Phys., 110, p. 6365
  • Gianturco, F., Lucchese, R., Cross Sections and Asymmetry Parameters in Gas-Phase Photoionization of C60 (2001) Phys. Rev. A, 64, p. 032706
  • Wiedmann, R.T., White, M.G., Wang, K., McKoy, V., Rotationally Resolved Photoionization of Polyatomic Hydrides: CH3, H2O, H2S, H2CO (1994) J. Chem. Phys., 100, p. 4738
  • Horáček, J., Sasakawa, T., Method of Continued Fractions with Application to Atomic Physics (1983) Phys. Rev. A, 28, p. 2151
  • Horáček, J., Sasakawa, T., Method of Continued Fractions with Application to Atomic Physics. II (1984) Phys. Rev. A, 30, p. 2274
  • Lee, M.T., Iga, I., Fujimoto, M.M., Lara, O., The Method of Continued Fractions for Electron (Positron)-Atom Scattering (1995) J. Phys. B: At. Mol. Opt. Phys., 28, p. L299
  • Lee, M.T., Iga, I., Fujimoto, M.M., Lara, O., Application of the Method of Continued Fractions for Electron Scattering by Linear Molecules (1995) J. Phys. B: At. Mol. Opt. Phys., 28, p. 3325
  • Ribeiro, E.M.S., Machado, L.E., Lee, M.T., Brescansin, L.M., Application of the Method of Continued Fractions to Electron Scattering by Polyatomic Molecules (2001) Comput. Phys. Commun., 136, p. 117
  • Machado, A., Fujimoto, M., Taveira, A., Brescansin, L., Lee, M.T., Application of the Method of Continued Fractions to Multichannel Studies on Electronic Excitation of H2 by Electron Impact (2001) Phys. Rev. A, 63, p. 032707
  • Nascimento, E.M., Ribeiro, E.M.S., Brescansin, L.M., Lee, M.T., Machado, L.E., Extension of the Method of Continued Fractions to Molecular Photoionization: An Application to Ammonia (2003) J. Phys. B: At. Mol. Opt. Phys., 36, p. 3621
  • Crank, J., Nicolson, P., A practical Method for Numerical Evaluation of Solutions of Partial Differential Equations of the Heat-Conduction Type (1947) Proc. Cambridge Philos. Soc., 43, p. 50
  • Goldberg, A., Shore, B.W., Modelling Laser Ionisation (1978) J. Phys. B: At. Mol. Phys., 11, p. 3339
  • Picón, A., Bahabad, A., Kapteyn, H.C., Murnane, M.M., Becker, A., Two-Center Interferences in Photoionization of a Dissociating H2+ Molecule (2011) Phys. Rev. A, 83, p. 013414
  • Yuan, K.J., Lu, H., Bandrauk, A., Linear- and Circular-Polarization Photoionization Angular Distributions in H2 and H2+ by Attosecond Xuv Laser Pulses (2011) Phys. Rev. A, 83, p. 043418
  • Silva, R.E.F., Catoire, F., Rivière, P., Bachau, H., Martín, F., Correlated Electron and Nuclear Dynamics in Strong Field Photoionization of H2+ (2013) Phys. Rev. Lett., 110, p. 113001
  • Bian, X.B., Photoionization of Atoms and Molecules Studied by the Crank-Nicolson Method (2014) Phys. Rev. A, 90, p. 033403
  • Shull, H., Loöwdin, P.O., Superposition of Configurations and Natural Spin Orbitals. Applications to the He Problem (1959) J. Chem. Phys., 30, p. 617
  • Goscinski, O., Conjugate Eigenvalue Problems and Generalized Sturmians (2002) Adv. Quantum Chem., 41, p. 51. , Preliminary research unpublished. Included as an appendix
  • Aquilanti, V., Cavalli, S., Coletti, C., Grossi, G., Alternative Sturmian Bases and Momentum Space Orbitals: An Application to the Hydrogen Molecular Ion (1996) Chem. Phys., 209, p. 405
  • Aquilanti, V., Cavalli, S., De Fazio, D., Hyperquantization Algorithm. I. Theory for Triatomic Systems (1998) J. Chem. Phys., 109 (10), p. 3792
  • Avery, J., Shim, R., Molecular Sturmians. Part 1 (2001) Int. J. Quantum Chem., 83, p. 1
  • Avery, J., Avery, J., The Generalized Sturmian Method for Calculating Spectra of Atoms and Ions (2003) J. Math. Chem., 33, p. 145
  • Rawitscher, G., Positive Energy Weinberg States for the Solution of Scattering Problems (1982) Phys. Rev. C, 25, p. 2196
  • Rawitscher, G., Iterative Solution of Integral Equations on a Basis of Positive Energy Sturmian Functions (2012) Phys. Rev. E, 85, p. 026701. , http://link.aps.org/doi/10.1103/PhysRevE.85.026701
  • Ovchinnikov, S.Y., Macek, J.H., Positive Energy Sturmian States for Two-Coulomb-Center Problems (1997) Phys. Rev. A, 55, p. 3605
  • Macek, J.H., Yu Ovchinnikov, S., Gasaneo, G., Exact Solution for Three Particles Interacting Via Zero-Range Potentials (2006) Phys. Rev. A, 73, p. 032704
  • Rotenberg, M., Application of Sturmian Functions to the Schroedinger Three-Body Problem: Elastic e+-H Scattering (1962) Ann. Phys. (N.Y.), 19, p. 262
  • Rotenberg, M., Theory and Application of Sturmian Functions (1970) Adv. At. Mol. Phys., 6, p. 233
  • Fano, U., Cooper, J., Spectral Distribution of Atomic Oscillator Strengths (1968) Rev. Mod. Phys., 40, p. 441
  • Fernández-Menchero, L., Otranto, S., Single ionization of CH4 by Bare Ions: Fully Differential Cross Sections (2010) Phys. Rev. A, 82, p. 022712
  • Granados-Castro, C.M., Gómez, I.A., Ancarani, L.U., Gasaneo, G., Mitnik, D.M., (2015) Perturbative-Generalized Sturmian Method for the Study of Photoionization in Atoms, , Submitted for publication
  • Granados-Castro, C.M., Ancarani, L.U., Gasaneo, G., Mitnik, D.M., Sturmian Approach to Single Photoionization of Many Electron Atoms and Molecules (2015) J. Phys.: Conf. Ser., 601, p. 012009
  • Harriman, J., Numerical Values for Hydrogen Fine Structure (1956) Phys. Rev., 101, p. 594
  • Granados-Castro, C.M., Ancarani, L.U., Gasaneo, G., Mitnik, D.M., Sturmian Approach to Single Photoionization of CH4 (2014) Few-Body Syst., 55, p. 1029
  • Moccia, R., One-Center Basis Set SCF MO's. III. H2O, H2S, and HCl (1964) J. Chem. Phys., 40, p. 2186
  • Moccia, R., One-Center Basis Set SCF MO's. II. NH3, NH4+, PH3, PH4+ (1964) J. Chem. Phys., 40, p. 2176
  • Moccia, R., One-Center Basis Set SCF MO's. I. HF, CH4, and SiH4 (1964) J. Chem. Phys., 40, p. 2164
  • Banna, M.S., McQuaide, B.H., Malutzki, R., Schmidt, V., The Photoelectron Spectrum of Water in the 30 to 140 eV Photon Energy Range (1986) J. Chem. Phys., 84, p. 4739
  • Brion, C., Hamnett, A., Wight, G., Van der Wiel, M., Branching Ratios and Partial Oscillator Strengths for the Photoionization of NH3 in the 15-50 eV Region (1977) J. Electron Spectros. Relat. Phenom., 12, p. 323
  • Backx, C., der Wiel, M.J.V., Electron-ion Coincidence Measurements of CH4 (1975) J. Phys. B: At. Mol. Phys., 8, p. 3020
  • Randazzo, J.M., Buezas, F., Frapiccini, A.L., Colavecchia, F.D., Gasaneo, G., Solving Three-Body-Breakup Problems with Outgoing-Flux Asymptotic Conditions (2011) Phys. Rev. A, 84, p. 052715
  • Cacelli, I., Moccia, R., Rizzo, A., Gaussian Type Orbital Basis Sets for the Calculation of Continuum Properties in Molecules: The Photoionization Cross Section of H2 (1993) J. Chem. Phys., 98, p. 8742A4 -

Citas:

---------- APA ----------
Granados-Castro, C.M., Ancarani, L.U., Gasaneo, G., Mitnik, D.M., Hoggan P.E. & Ozdogan T. (2016) . A Sturmian Approach to Photoionization of Molecules. Electron Correlation in Molecules ? ab initio Beyond Gaussian Quantum Chemistry, 2016, 73, 3-57.
http://dx.doi.org/10.1016/bs.aiq.2015.06.002
---------- CHICAGO ----------
Granados-Castro, C.M., Ancarani, L.U., Gasaneo, G., Mitnik, D.M., Hoggan P.E., Ozdogan T. "A Sturmian Approach to Photoionization of Molecules" . Electron Correlation in Molecules ? ab initio Beyond Gaussian Quantum Chemistry, 2016 73 (2016) : 3-57.
http://dx.doi.org/10.1016/bs.aiq.2015.06.002
---------- MLA ----------
Granados-Castro, C.M., Ancarani, L.U., Gasaneo, G., Mitnik, D.M., Hoggan P.E., Ozdogan T. "A Sturmian Approach to Photoionization of Molecules" . Electron Correlation in Molecules ? ab initio Beyond Gaussian Quantum Chemistry, 2016, vol. 73, 2016, pp. 3-57.
http://dx.doi.org/10.1016/bs.aiq.2015.06.002
---------- VANCOUVER ----------
Granados-Castro, C.M., Ancarani, L.U., Gasaneo, G., Mitnik, D.M., Hoggan P.E., Ozdogan T. A Sturmian Approach to Photoionization of Molecules. Adv. Quantum Chem. 2016;73:3-57.
http://dx.doi.org/10.1016/bs.aiq.2015.06.002