Abstract:
In this chapter we analyze the possibilities and ranges of validity of the dielectric formalism to deal with correlated bound electrons in matter by using the shellwise local plasma approximation. This model describes the response of the electrons of the same binding energy as a whole (collectively), screening the interaction with the impinging ion. It considers separately each sub-shell of target electrons, with the corresponding dielectric response. The density of electrons and the energy gap are included explicitly by employing the Levine and Louie dielectric function. The goal of this chapter is to summarize and review the capability of this model to deal with fundamental magnitudes of the atomic collisions expressed as different moments of the energy loss: ionization cross sections (single or multiple, differential, and total), stopping power (and mean excitation energy), and energy loss straggling. This review covers a wide range of the collisions of ions with gases and solids, paying special attention to multi-electronic targets. The advantages and disadvantages of the model in comparison with independent electron ones, ranges of validity and future prospect will be considered. © 2013 Elsevier Inc.
Registro:
Documento: |
Artículo
|
Título: | The Dielectric Formalism for Inelastic Processes in High-Energy Ion-Matter Collisions |
Autor: | Montanari, C.C.; Miraglia, J.E. |
Filiación: | Instituto de Astronomía y Física del Espacio, CONICET and Universidad de Buenos Aires, casilla de correo 67, sucursal 28, C1428EGA, Buenos Aires, Argentina
|
Palabras clave: | CDW; CDW-EIS; Dielectric function; Energy loss; Energy loss straggling; Free electron gas; Inner-shells; Ionization; Shellwise local plasma approximation; Stopping power |
Año: | 2013
|
Volumen: | 65
|
Página de inicio: | 165
|
Página de fin: | 201
|
DOI: |
http://dx.doi.org/10.1016/B978-0-12-396455-7.00007-8 |
Título revista: | Advances in Quantum Chemistry
|
Título revista abreviado: | Adv. Quantum Chem.
|
ISSN: | 00653276
|
Registro: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00653276_v65_n_p165_Montanari |
Referencias:
- Belkicd́, D., Manccaroňev, I., Hanssen, J., Four-body methods for high-energy ion-atom collisions (2008) Rev. Mod. Phys., 80, p. 249
- Belkicd́, D., (2008) Quantum Theory of High-Energy Ion-Atom Collisions, , Taylor and Francis, London
- Schardt, D., Elsasser, T., Schuls-Ertner, D., Heavy-ion tumor therapy: physical radiobiological benefits (2010) Rev. Mod. Phys., 82, p. 383
- Belkicd́, D., Reviews of theories on ionization in fast ion-atom collisions with prospects for applications to hadron therapy (2010) J. Math. Chem., 47, p. 1366
- Paganatti, H., Range uncertainties in proton therapy and the role of Monte Carlo simulations (2012) Phys. Med. Biol., 57, pp. R99
- Paul, H., The Stopping Power of Matter for Positive Ions (2012), p. 113. , http://www.intechopen.com/books/modern-practices-in-radiation-therapy, In Modern Practices in Radiation Therapy; Natanasabapathi, G., Ed.; InTech; Montanari, C.C., Archubi, C.D., Mitnik, D.M., Energy loss of protons in Au, Pb, and Bi using relativistic wave functions (2009) Phys. Rev. A, 79, p. 032903
- Montanari, C.C., Mitnik, D.M., Miraglia, J.E., A collective model for inner shell ionization of very heavy targets (2011) Radiat. Eff. Defects Solids, 166, p. 338
- Echenique, P.M., Flores, F., Ritchie, R.H., Dynamic screening of ions in condensed matter (1990) Solid State Phys., 43, p. 229
- Lindhard, J., On the properties of a gas of charged particles (1954) Mat. Fys. Medd. Dan. Vid. Selsk, 28, p. 1
- Ritchie, R.H., Interaction of charged particles with a degenerate fermi-dirac electron gas (1959) Phys. Rev., 114, p. 644
- Lindhard, J., Scharff, M., Energy loss in matter by fast particles of low charge (1953) Mat. Fys. Medd. Dan. Vid. Selsk, 27, p. 1
- Bonderup, E., Stopping of swift protons evaluated from statistical atomic model (1967) Mat. Fys. Medd. Dan. Vid. Selsk, 35, p. 1
- Rousseau, C.C., Chu, W.K., Powers, D., Calculations of stopping cross sections for 0.8- to 2.0-MeV alpha particles (1971) Phys. Rev. A, 4, p. 1066
- Chu, W.K., Powers, D., Calculations of mean excitation energy for all elements (1972) Rev. Lett. A, 40, p. 23
- Wang, Y.-N., Ma, T.-C., Stopping power for hydrogen molecular ions in solids: influence of the inner-shell electrons of target atoms (1994) Phys. Rev. A, 50, p. 3192
- Fuhr, J.D., Ponce, V.H., García de Abajo, F.J., Dynamic screening of fast ions moving in solids (1998) Phys. Rev. B, 57, p. 9329
- Montanari, C.C., Miraglia, J.E., Arista, N.R., Dynamics of solid inner-shell electrons in collisions with bare and dressed swift ions (2002) Phys. Rev. A, 66, p. 042902
- Montanari, C.C., Miraglia, J.E., Arista, N.R., Antiscreening mode of projectile-electron loss (2003) Phys. Rev. A, 67, p. 062702
- Kadhane, U., Montanari, C.C., Tribedi, L.C., K-shell processes in heavy-ion collisions in solids and the local plasma approximation (2003) Phys. Rev. A, 67, p. 032703
- Kadhane, U., Montanari, C.C., Tribedi, L.C., Experimental study of K-shell ionization of low-Z solids in collisions with intermediate-velocity carbon ions and the local plasma approximation (2003) J. Phys. B, 36, p. 3043
- Lantschner, G.H., Eckardt, J.C., Lifschitz, A.F., Energy loss of helium ions in zinc (2004) Phys. Rev. A, 69, p. 062903
- Kadhane, U., Kumar, A., Montanari, C.C., K-shell ionization of low Z elements in ion-solid collisions and applicability of local plasma approximation (2006) Radiat. Phys. Chem., 75, p. 1542
- Montanari, C.C., Miraglia, J.E., Stopping power for swift dressed ions (2006) Phys. Rev. A, 73, p. 024901
- Montanari, C.C., Miraglia, J.E., Heredia-Avalos, S., Calculation of energy-loss straggling of C, Al, Si, and Cu for fast H, He, and Li ions (2007) Phys. Rev. A, 75, p. 022903
- Garcia, A.J., Miraglia, J.E., Influence of surface channeling in the stopping of protons colliding with LiF surfaces (2006) Phys. Rev. A, 74, p. 012902
- Archubi, C.D., Montanari, C.C., Miraglia, J.E., Many-electron model for multiple ionization in atomic collisions (2007) J. Phys. B: At. Mol. Opt. Phys., 40, p. 943
- Miraglia, J.E., Gravielle, M.S., Ionization of the He, Ne, Ar, Kr, and Xe isoelectronic series by proton impact (2008) Phys. Rev. A, 78, p. 052705
- Montanari, C.C., Miraglia, J.E., Behar, M., Theoretical and experimental study of energy loss of Li ions in Zn (2008) Phys. Rev. A, 77, p. 042901
- Cantero, E.D., Fadanelli, R.C., Montanari, C.C., Experimental and theoretical study of the energy loss of Be and B ions in Zn (2009) Phys. Rev. A, 79, p. 042904
- Montanari, C.C., Miraglia, J.E., (2009), Theoretical Stopping Power of Copper for Protons Using the Shellwise Local Plasma Approximation; Cornell University Library, Available from: [physics.atom-ph], arxiv:0904.1386v1; Montanari, C.C., Mitnik, D.M., Archubi, C.D., Energy loss of protons in W using fully relativistic calculations and mean excitation energies of W, Au, Pb, and Bi (2009) Phys. Rev. A, 80, p. 012901
- Cantero, E.D., Montanari, C.C., Behar, M., Experimental and theoretical study of the energy loss of C and O in Zn (2011) Phys. Rev. A, 84, p. 014902
- Meltzer, D.E., Sabin, J.R., Trickey, S.B., Calculation of mean excitation energy and stopping cross section in the orbital local plasma approximation (1990) Phys. Rev. A, 41, p. 220
- Levine, Z.H., Louie, S.G., New model dielectric function and exchange-correlation potential for semiconductors and insulators (1982) Phys. Rev. B, 25, p. 6310
- Mermin, N.D., Lindhard dielectric function in the relaxation-time approximation (1970) Phys. Rev. B, 1, p. 2362
- (1999) The Electronic Handbook of Optical Constants of Solids, , CA Academic, San Diego, E.D. Palik, G. Ghosh (Eds.)
- Isaacson, D., (1975) Compilation of rs Values, , Radiation and Solid State Laboratory, New York University, New York, Doc. No. 02698
- Clementti, E., Roetti, C., Roothaan-Hartree-Fock atomic wavefunctions: basis functions and their coefficients for ground and certain excited states of neutral and ionized atoms, Z=54 (1974) At. Data Nucl. Data Tables, 14, p. 177
- Bunge, C.F., Barrientos, J.A., Bunge, A.V., Hartree-Fock and Roothaan-Hartree-Fock energies for the ground states of He through Xe (1992) Phys. Rev. A, 46, p. 3691
- Flannery, M.R., Levi, H., Simple analytic expression for general two-center Coulomb integrals (1969) J. Chem. Phys., 50, p. 2938
- Paul, H., New developments in stopping power for fast ions (2007) Nucl. Instrum. Methods Phys. Res. B, 261, p. 1176
- (2005), International Commission on Radiation Units and Measurements, ICRU Report 73, Oxford University Press, Oxford; (1993), ICRU Report 49, International Commission on Radiation Units and Measurements, Bethesda, MD; Paul, H., Stopping Power for Light Ions http://www.exphys.uni-linz.ac.at/stopping, Graphs, Data, Comments and Programs; Ziegler, J.F., http://www.srim.org, The Stopping and Range of Ions in Matter; Sigmund, P., (2006), Particle Penetration and Radiation Effects Springer Series in Solid-State Physics; Springer: Berlin; Arista, N.R., Energy loss of ions in solids: non-linear calculations for slow and swift ions (2002) Nucl. Instrum. Methods Phys. Res. B, 195, p. 91
- Grande, P.L., Schiwietz, G., Ionization and Energy Loss Beyond Perturbation Theory (2004) Advances in Quantum Chemistry, 45, p. 7. , Elsevier, New York
- Abril, I., Garcia-Molina, R., Denton, C.D., Dielectric description of wakes and stopping powers in solids (1998) Phys Rev. A, 58, p. 357
- Balluc, N., Abe, K., Boutard, J.L., Status of R&D activities on materials for fusion power reactors (2007) Nucl. Fusion, 47, pp. S696
- Oreg, J., Goldstein, W.H., Klapisch, M., Autoionization and radiationless electron capture in complex spectra (1991) Phys. Rev. A, 44, p. 1750
- Williams, G.P., (1986), 170. , http://www.jlab.org/gwyn/ebindene.html, Electron Binding Energies of the Elements; CRC Handbook of Chemistry and Physics, 66th ed.; Electron Binding Energies, X-Ray Data Booklet, Lawrence Berkeley Laboratory Pub-490 Rev. Chapter 2.2; Arista, N.R., Charge States and Energy Loss of Ions in Solids (2006), (52), p. 595. , In Ion Beam Science, Solved and Unsolved Problems; Sigmund, P., Ed.; Mat. Fis. Medd; Müller, J., Bürgdorfer, J., Dynamical thresholds for the existence of excited electronic states of fast ions in solids (1991) Phys. Rev. A, 43, p. 6027
- Paul, H., Recent results in stopping power for positive ions, some critical comments (2010) Nucl. Instrum. Methods Phys. Res. B, 268, p. 3421
- Martinez-Tamayo, G., Eckardt, J.C., Lantschner, G.H., Energy loss of H+ and He+ in Al, Zn, and Au in the very low- to intermediate-energy range (1996) Phys. Rev. A, 54, p. 3131
- Heredia-Avalos, S., Abril, I., Denton, C.D., (2007) J. Phys.: Condens. Matter., 19, p. 466205
- Kreussler, S., Varelas, C., Sizmann, R., Electronic stopping power and effective charge of 50- to 230-keV D+ and He+ in carbon, aluminum, gold, and cesium (1982) Phys. Rev. B, 26, p. 6099
- Santry, D.C., Werner, R.D., Stopping powers of C, Al, Si, Ti, Ni, Ag and Au for deuterons (1981) Nucl. Instrum. Methods Phys. Res. B, 188, p. 211
- Bethe, T., Zur theory des durchgangs schneller korpuskular-strahlen durch materie (1930) Ann. Phys., 5, p. 325
- Kamakura, S., Sakamoto, N., Ogawa, H., Mean excitation energies for the stopping power of atoms and molecules evaluated from oscillator-strength spectra (2006) J. Appl. Phys., 100, p. 064905
- Lindhard, J., Scharff, M., Stopping power of heavier substances (1952) Phys. Rev., 85, p. 1058
- Schiwietz, G., Grande, P.L., Improved charge-state formulas (2001) Nucl. Instrum. Methods Phys. Res. B, 125, pp. 175-177
- Grande, P.L., Schiwietz, G., Stopping of protons. Improved accuracy of the UCA model (2012) Nucl. Instrum. Methods Phys. Res. B, 273, p. 1
- Lifschitz, A.F., Arista, N.R., Electronic energy loss of helium ions in aluminum using the extended-sum-rule method (1998) Phys. Rev. A, 58, p. 2168
- Arista, N.R., Lifschitz, A.F., Non-Linear Approach to the Energy Loss of Ions in Solids , p. 47. , In: Cabrera-Trujillo, R., Sabin, J., Eds.; Advances in Quantum Chemistry; ElsevierInc; Besenbacher, F., Andersen, J.U., Bonderup, E., Straggling in energy loss of energetic hydrogen and helium ions (1980) Nucl. Instrum. Methods Phys. Res. B, 168, p. 1
- Bohr, N., Penetration of atomic particles through matter (1948) K. Dan. Vidensk. Selsk. Mat. Fys, Medd., 24, p. 19
- Ma, L., Wang, Y., Xue, J., Energy loss and straggling of MeV ions through biological samples (2007) J. Appl. Phys., 102, p. 084702
- Mayer, M., SIMNRA simulation program for the analysis of NRA, RBS and ERDA (1999) AIP Conf. Proc, 475, p. 541
- Heredia-Avalos, S., Garcia-Molina, R., Energy-loss of swift Cn+(n=2-60) clusters through thin foils (2007) Phys. Rev. A, 76, p. 012901
- Garcia-Molina, R., Abril, I., Heredia-Avalos, S., A combined molecular dynamics and Monte Carlo simulation of the spatial distribution of energy deposition by proton beams in liquid water (2011) Phys. Med. Biol., 56, p. 6475
- Yang, Q., O'Connor, D.J., Wang, Z., Empirical formulae for energy loss straggling of ions in matter (1991) Nucl. Instrum. Methods Phys. Res. B, 61, p. 49
- Barradas, N.P., Rauhala, E., Data Analysis Software for Ion Beam Analysis (2009) Handbook of Modern Ion Beam Materials Analysis, p. 307. , MRS, Warrendale, Pennsylvania, Y. Wang, M. Nastasi (Eds.)
- Msimanga, M., Pineda-Vargas, C.A., Comrie, C.M., Heavy ion energy loss straggling data from time of flight stopping force measurements (2012) Nucl. Instrum. Methods Phys. Res. B, 273, p. 6
- Moon, D.W., Le, H.I., Kim, K.J., Estimation of the electronic straggling using delta-doped multilayers (2001) Nucl. Instrum. Methods Phys. Res. B, 183, p. 10
- Eckardt, J.C., Lantschner, G.H., Determination of thin foil thickness inhomogeneities by analysis of ion beam energy loss spectra (1994) Thin Solid Films, 249, p. 11
- Hsu, J.Y., Yu, Y.C., Liang, J.H., Energy loss of He, Li and B isotopes with MeV energies in (2004) Au. Nucl. Instrum. Methods Phys. Res. B, 251, pp. 219-220
- Kido, Y., Energy straggling for fast proton beams passing through solid materials (1987) Nucl. Instrum. Methods Phys. Res. B, 347, pp. 24-25
- Kido, Y., Koshikawa, T., Energy straggling for medium-energy H+ beams penetrating Cu, Ag, and Pt (1991) Phys. Rev. A, 44, p. 1759
- Kawano, A., Kido, Y., Effects of energy straggling on surface analysis with fast ion beams (1988) J. Appl. Phys., 63, p. 75
- Amadon, S., Lanford, W.A., He stopping power and straggle in Al, Ti, Co, Cu, Ag, Ta, and Au from 1.5 to 4MeV (2006) Nucl. Instrum. Methods Phys. Res. B, 249, p. 34
- Eckardt, J.C., Lantschner, G.H., Experimental energy straggling of protons in thin solid foils (2001) Nucl. Instrum. Methods Phys. Res. B, 93, pp. 175-177
- Alberts, H.W., Malherbe, J.B., Energy loss and straggling of p-, d- and a-particles in Au in the energy region 0.2 to 2.4MeV (1983) Radiat. Eff., 69, p. 231
- Chu, W.K., Calculation of energy straggling for protons and helium ions (1976) Phys. Rev. A, 13, p. 2057
- Hoffman, G.E., Powers, D., Energy straggling of a particles in solid materials (1976) Phys. Rev. A, 13, p. 2042
- Friedland, E., Kotze, C.P., Energy-loss straggling of protons, deuterons and a-particles in copper (1981) Nucl. Instrum. Methods Phys. Res., 191, p. 490
- Livingston, M.S., Bethe, H.A., Nuclear dynamics, experimental (1937) Rev. Mod. Phys., 9, p. 245
- Sigmund, P., Schinner, A., Barkas effect, shell correction, screening and correlation in collisional energy-loss straggling of an ion beam (2003) Eur. Phys. J. D, 23, p. 201
- Andersen, H.H., Csete, A., Ichioka, T., An apparatus to measure stopping powers for low-energy antiprotons and protons (2002) Nucl. Instrum. Methods Phys. Res. B, 194, p. 217
- Møller, S.P., Csete, A., Ichioka, T., Antiproton and proton energy loss straggling at keV energies (2008) Eur. Phys. J. D, 46, p. 89
- Andersen, H.H., Besenbacher, F., Goddiksen, P., Stopping power and straggling of 80-500keV lithium ions in C, Al, Ni, Cu, Se, Ag, and Te (1980) Nucl. Instrum. Methods Phys. Res., 168, p. 75
- Eckardt, J.C., Energy loss and straggling of protons and helium ions traversing some thin solid foils (1978) Phys. Rev. A, 18, p. 426
- Malherbe, J.B., Alberts, H.W., Energy-loss straggling in lead of p, d and a-particles in the energy region 0.2-2.5MeV (1982) Nucl. Instrum. Methods Phys. Res. B, 196, p. 499
- Crothers, D.S.F., McCann, J.F., (1983) J. Phys. B: At. Mol. Opt. Phys., 16, p. 3229
- Fainstein, P.D., Ponce, V.H., Rivarola, R.D., A theoretical model for ionisation in ion-atom collisions. Application for the impact of multicharged projectiles on helium (1988) J. Phys. B: At. Mol. Opt. Phys., 21, p. 287
- Belkicd́, D., A quantum theory of ionization in fast collisions between ions and atomic systems (1978) J. Phys. B, 20, p. 3529
- Montanari, C.C., Miraglia, J.E., Antiproton, proton and electron impact multiple ionization of rare gases (2012) J. Phys. B: At. Mol. Opt. Phys., 45, p. 105201
- DuBois, R.D., Toburen, L.H., Rudd, M.E., Multiple ionization of rare gases by H+ and He+ impact (1984) Phys. Rev. A, 29, p. 70
- Cavalcanti, E.G., Sigaud, G.M., Montenegro, E.C., Absolute cross sections for multiple ionization of noble gases by swift proton impact (2003) J. Phys. B: At. Mol. Opt. Phys., 36, p. 3087
- Rudd, M.E., Kim, Y.-K., Madison, D.H., Gallagher, J.W., Electron production in proton collisions: total cross sections (1985) Rev. Mod. Phys., 57, p. 965
- Schram, B.L., Boerboom, A.J.H., Kistermaker, J., Partial ionization cross sections of noble gases for electrons with energy 0.5-16keV: I. Helium and neon (1966) Physica, p. 185
- Schram, B.L., Partial ionization cross sections of noble gases for electrons with energy 0.5-18keV: II. Argon, Krypton and Xenon (1966) Physica, p. 197
- Nagy, P., Skutlartz, A., Schmidt, V., Absolute ionisation cross sections for electron impact in rare gases (1980) J. Phys. B: At. Mol. Opt. Phys., 13, p. 1249
- Haugen, H.K., Andersen, L.H., Hvelplund, P., Multiple ionization of noble gases by fully stripped ions (1982) Phys. Rev. A, 26, p. 1962
- Montanari, C.C., Montenegro, E.C., Miraglia, J.E., CDW-EIS calculations for multiple ionization of Ne, Ar, Kr and Xe by the impact of H+ and He+, including post-collisional electron emission (2010) J. Phys. B: At. Mol. Opt. Phys., 43, p. 165201
- Rudd, M.E., Kim, Y.-K., Madison, D.H., Electron production in proton collisions with atoms and molecules: energy distributions (1992) Rev. Mod. Phys., 64, p. 441
- Rudd, M.E., Toburen, L.H., Stolterfoht, N., Differential cross sections for ejection of electrons from argon by protons (1979) At. Data Nucl. Data Tables, 23, p. 405
- Toburen, L.H., Distribution in energy and angle of electrons ejected from xenon by 0.3- to 2.0-MeV protons (1974) Phys. Rev. A, 9, p. 2505
- Miraglia, J.E., Ionization of He, Ne, Ar, Kr, and Xe by proton impact: single differential distributions in energy and angles (2009) Phys. Rev. A, 79, p. 022708
- Montenegro, E.C., Meyerhof, W.E., Sum rules and electron-electron interaction in two-center scattering (1991) Phys. Rev. A, 43, p. 2289
Citas:
---------- APA ----------
Montanari, C.C. & Miraglia, J.E.
(2013)
. The Dielectric Formalism for Inelastic Processes in High-Energy Ion-Matter Collisions. Advances in Quantum Chemistry, 65, 165-201.
http://dx.doi.org/10.1016/B978-0-12-396455-7.00007-8---------- CHICAGO ----------
Montanari, C.C., Miraglia, J.E.
"The Dielectric Formalism for Inelastic Processes in High-Energy Ion-Matter Collisions"
. Advances in Quantum Chemistry 65
(2013) : 165-201.
http://dx.doi.org/10.1016/B978-0-12-396455-7.00007-8---------- MLA ----------
Montanari, C.C., Miraglia, J.E.
"The Dielectric Formalism for Inelastic Processes in High-Energy Ion-Matter Collisions"
. Advances in Quantum Chemistry, vol. 65, 2013, pp. 165-201.
http://dx.doi.org/10.1016/B978-0-12-396455-7.00007-8---------- VANCOUVER ----------
Montanari, C.C., Miraglia, J.E. The Dielectric Formalism for Inelastic Processes in High-Energy Ion-Matter Collisions. Adv. Quantum Chem. 2013;65:165-201.
http://dx.doi.org/10.1016/B978-0-12-396455-7.00007-8