Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte la política de Acceso Abierto del editor

Registro:

Documento: Artículo
Título:Chapter 9: Purification of correlated reduced density matrices: Review and applications
Autor:Alcoba, D.R.
Filiación:Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
Año:2007
Volumen:134
Página de inicio:205
Página de fin:259
Título revista:Advances in Chemical Physics
Título revista abreviado:Adv. Chem. Phys.
ISSN:00652385
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00652385_v134_n_p205_Alcoba

Referencias:

  • Coleman, A.J., Yukalov, V.I., (2000) Reduced Density Matrices: Coulson's Challenge, , Springer-Verlag, New York
  • Davidson, E.R., (1976) Reduced Density Matrices in Quantum Chemistry, , Academic Press, New York
  • (1968) Reduced Density Matrices with Applications to Physical and Chemical Systems, , A. J. Coleman and R. M. Erdahl, eds, Queen's Papers on Pure and Applied Mathematics No. 11, Queen's University, Kingston, Ontario
  • (1974) Reduced Density Matrices with Applications to Physical and Chemical Systems II, , R. M. Erdahl, ed, Queen's Papers on Pure and Applied Mathematics No. 40, Queen's University, Kingston, Ontario
  • Density Matrices and Density Functionals (1985) Proceedings of the A. J. Coleman Symposium, , R. M. Erdahl and V. Smith, eds, Kingston, Ontario, Reidel, Dordrecht
  • (2000) Many-Electron Densities and Reduced Density Matrices, , J. Cioslowski, ed, Kluwer, Dordrecht, The Netherlands
  • Husimi, K., Some formal properties of the density matrix (1940) Proc. Soc. Japan, 22, p. 264
  • Löwdin, P.O., Quantum theory of many particle systems. I. Physical interpretation by means of density matrices, natural spin orbitals, and convergence problems in the method of configuration interaction (1955) Phys. Rev, 97, p. 1474
  • Mayer, J.E., Electron correlation (1955) Phys. Rev, 100, p. 1579
  • McWeeny, R., The density matrix in self-consistent field theory. I. Iterative construction of the density matrix (1956) Proc. R. Soc. A, 235, p. 496
  • Ayres, R.U., Variational approach to the many-body problem (1958) Phys. Rev, 111, p. 1453
  • Coulson, C.A., Present state of molecular structure calculations (1960) Rev. Mod. Phys, 32, p. 170
  • Coleman, A.J., Structure of fermion density matrices (1963) Rev. Mod. Phys, 35, p. 668
  • Pérez-Romero, E., Tel, L.M., Valdemoro, C., Traces of spin-adapted reduced density matrices (1997) Int. J. Quantum Chem, 61, p. 55
  • Valdemoro, C., Tel, L.M., Pérez-Romero, E., N-representability problem within the framework of the contracted Schrödinger equation (2000) Phys. Rev. A, 61, p. 032507
  • Garrod, C., Percus, J.K., Reduction of N-particle variational problem (1964) J. Math. Phys, 5, p. 1756
  • Erdahl, R.M., Representability, (1978) Int. J. Quantum Chem, 13, p. 697
  • Valdemoro, C., Alcoba, D.R., Tel, L.M., Pérez-Romero, E., Imposing bounds on the high-order reduced density matrices elements (2001) Int. J. Quantum Chem, 85, p. 214
  • Davidson, E.R., Linear inequalities for density matrices: III (2002) Int. J. Quantum Chem, 90, p. 1555
  • Erdahl, R.M., Jin, B., The lower bound method for reduced density matrices (2000) J. Mol. Struct. (Theochem.), 527, p. 207
  • Kijewski, L.J., Percus, J.K., Lower-bound method for atomic calculations (1970) Phys. Rev. A, 2, p. 1659
  • Garrod, C., Mihailovic, M.V., Rosina, M., Variational approach to 2-body density matrix (1975) J. Math. Phys, 16, p. 868
  • Rosina, M., Garrod, C., Variational calculation of reduced density matrices (1975) J. Comp. Phys, 18, p. 300
  • Garrod, C., Rosina, M., Particle-hole matrix - its connection with symmetries and collective features of ground state (1975) J. Math. Phys, 10, p. 1855
  • Mihailovic, M.V., Rosina, M., Excitations as ground state variational parameters (1969) Nucl. Phys. A, 130, p. 386
  • Garrod, C., Fusco, M.A., Density matrix variational caculation for atomic-Be (1976) Int. J. Quantum Chem, 10, p. 495
  • Mihailović, M.V., Rosina, M., Variational approach to density matrix for light-nuclei (1975) Nucl. Phys. A, 237, p. 221
  • Erdahl, R.M., Two algorithms for the lower bound method of reduced density matrix theory (1979) Rep. Math. Phys, 15, p. 147
  • Nakata, M., Nakatsuji, H., Ehara, M., Fukuda, M., Nakata, K., Fujisawa, K., Variational calculations of fermion second-order reduced density matrices by semidefinite programming algorithm (2001) J. Chem. Phys, 114, p. 8282
  • Mazziotti, D.A., Variational minimization of atomic and molecular ground-state energies via the two-particle reduced density matrix (2002) Phys. Rev. A, 65, p. 062511
  • Gidofalvi, G., Mazziotti, D.A., Boson correlation energies via variational minimization with the two-particle reduced density matrix: Exact N-representability conditions for harmonic interactions (2004) Phys. Rev. A, 69, p. 042511
  • Juhasz, T., Mazziotti, D.A., Perturbation theory corrections to the two-particle reduced density matrix variational method (2004) J. Chem. Phys, 121, p. 1201
  • Zhao, Z., Braams, B.J., Fukuda, H., Overton, M.L., Percus, J.K., The reduced density matrix method for electronic structure calculations and the role of three-index representability conditions (2004) J. Chem. Phys, 120, p. 2095
  • Mazziotti, D.A., Realization of quantum chemistry without wave functions through first-order semidefinite programming (2004) Phys. Rev. Lett, 93, p. 213001
  • Rosina, M., Application of 2-body density matrix of ground-state for calculations of some excited-states (1978) Int. J. Quantum Chem, 13, p. 737
  • Mazziotti, D.A., Erdahl, R.M., Uncertainty relations and reduced density matrices: Mapping many-body quantum mechanics onto four particles (2001) Phys. Rev. A, 63, p. 042113
  • Valdemoro, C., Spin-adapted reduced Hamiltonians. 1. Elementary excitations (1985) Phys. Rev. A, 31, p. 2114
  • Valdemoro, C., (1992) Computational Chemistry Structure, Interactions and Reactivity, Part A, , S. Fraga, ed, Elsevier, Amsterdam, and references therein
  • Valdemoro, C., Spin-adapted reduced Hamiltonians. 2. Total energy and reduced density-matrices (1985) Phys. Rev. A, 31, p. 2123
  • Karwowski, J., Duch, W., Valdemoro, C., Matrix-elements of a spin-adapted reduced Hamiltonian (1986) Phys. Rev. A, 33, p. 2254
  • Valdemoro, C., Lain, L., Beitia, F., Ortiz de Zarate, A., Castaño, F., Direct approximation to the reduced density-matrices: Calculation of the isoelectronic sequence of beryllium up to argon (1986) Phys. Rev. A, 33, p. 1525
  • Torre, A., Lain, L., Millan, J., Analysis of several methods in the direct approximation of reduced density-matrices (1993) Nuovo Cimento B, 108, p. 491
  • Valdemoro, C., de Lara-Castells, M.P., Bochicchio, R., Perez-Romero, E., A relevant space within the spin-adapted reduced Hamiltonian theory. I. Study of the BH molecule (1997) Int. J. Quantum Chem, 65, p. 97
  • Valdemoro, C., de Lara-Castells, M.P., Bochicchio, R., Pérez-Romero, E., A relevant space within the spin-adapted reduced Hamiltonian theory. II. Study of the π-cloud in benzene and naphthalene (1997) Int. J. Quantum Chem, 65, p. 107
  • Valdemoro, C., Density Matrices and Density Functionals (1985) Proceedings of the A. J. Coleman Symposium, , R. M. Erdahl and V. Smith, eds, Kingston, Ontario, Reidel, Dordrecht
  • Colmenero, F., Pérez del Valle, C., Valdemoro, C., Approximating q-order reduced density-matrices in terms of lower-order ones. 1. General relations (1993) Phys. Rev. A, 47, p. 971
  • Colmenero, F., Valdemoro, C., Approximating q-order reduced density-matrices in terms of lower-order ones. 1 (1993) Applications. Phys. Rev. A, 47, p. 979
  • Colmenero, F., Valdemoro, C., Self-consistent approximate solution of the second-order contracted Schrödinger equation (1994) Int. J. Quantum Chem, 51, p. 369
  • Nakatsuji, H., Yasuda, K., Direct determination of the quantum-mechanical density matrix using the density equation (1996) Phys. Rev. Lett, 76, p. 1039
  • Valdemoro, C., Tel, L.M., Pérez-Romero, E., The contracted Schrödinger equation: Some results (1997) Adv. Quantum Chem, 28, p. 33
  • Yasuda, K., Nakatsuji, H., Direct determination of the quantum-mechanical density matrix using the density equation. 2 (1997) Phys. Rev. A, 56, p. 2648
  • Mazziotti, D.A., Contracted Schrödinger equation: Determining quantum energies and two-particle density matrices without wavefunctions (1998) Phys. Rev. A, 57, p. 4219
  • Mazziotti, D.A., Approximate solution for electron correlation through the use of Schwinger probes (1998) Chem. Phys. Lett, 289, p. 419
  • Mazziotti, D.A., 3,5-Contracted Schrödinger equation: Determining quantum energies and reduced density matrices without wavefunctions (1998) Int. J. Quantum Chem, 70, p. 557
  • Yasuda, K., Direct determination of the quantum-mechanical density matrix: Parquet theory (1999) Phys. Rev. A, 59, p. 4133
  • Ehara, M., Nakata, M., Kou, H., Yasuda, K., Nakatsuji, H., Direct determination of the density matrix using the density equation: Potential energy curves of HF, CH4, BH3, NH3, and H2O (1999) Chem. Phys. Lett, 305, p. 483
  • Mazziotti, D.A., Pursuit of N-representability for the contracted Schrödinger equation through density-matrix reconstruction (1999) Phys. Rev. A, 60, p. 3618
  • Mazziotti, D.A., Comparison of contracted Schrödinger and coupled-cluster theories (1999) Phys. Rev. A, 60, p. 4396
  • Mazziotti, D.A., Complete reconstruction of reduced density matrices (2000) Chem. Phys. Lett, 326, p. 212
  • Valdemoro, C., Tel, L.M., Pérez-Romero, E., Torre, A., The iterative solution of the contracted Schrödinger equation: A new quantum chemical method (2001) J. Mol. Struct. (Theochem.), 537, p. 1
  • Kutzelnigg, W., Mukherjee, D., Direct determination of the cumulants of the reduced density matrices (1999) J. Chem. Phys, 110, p. 2800
  • Alcoba, D.R., Valdemoro, C., Family of modified-contracted Schrödinger equations (2001) Phys. Rev. A, 64, p. 062105
  • Yasuda, K., Uniqueness of the solution of the contracted Schrödinger equation (2002) Phys. Rev. A, 65, p. 052121
  • Alcoba, D.R., Equivalence theorems between the solutions of the fourth-order modified contracted Schrödinger equation and those of the Schrödinger equation (2002) Phys. Rev. A, 65, p. 032519
  • Herbert, J.M., Harriman, J.E., Contraction relations for Grassmann products of reduced density matrices and implications for density matrix reconstruction (2002) Phys. Rev. A, 65, p. 022511
  • Herbert, J.M., Harriman, J.E., Extensivity and the contracted Schrödinger equation (2002) J. Chem. Phys, 117, p. 7464
  • Mazziotti, D.A., Solution of the 1,3-contracted Schrödinger equation through positivity conditions on the two-particle reduced density matrix (2002) Phys. Rev. A, 66, p. 062503
  • Nooijen, M., Wladyslawski, M., Hazra, A., Cumulant approach to the direct calculation of reduced density matrices: A critical analysis (2003) J. Chem. Phys, 118, p. 4832
  • Mazziotti, D.A., Extraction of electronic excited states from the ground-state two-particle reduced density matrix (2003) Phys. Rev. A, 68, p. 052501
  • Mazziotti, D.A., Purification of correlated reduced density matrices (2002) Phys. Rev. E, 65, p. 026704
  • Valdemoro, C., Alcoba, D.R., Tel, L.M., Recent developments in the contracted Schrödinger equation method: Controlling the N-representability of the second-order reduced density matrix (2003) Int. J. Quantum Chem, 93, p. 212
  • Alcoba, D.R., Valdemoro, C., Spin structure and properties of the correlation matrices corresponding to pure spin states: Controlling the S-representability of these matrices (2005) Int. J. Quantum Chem, 102, p. 629
  • A. J. Coleman, in Reduced Density Matrices with Applications to Physical and Chemical Systems II (R. M. Erdahl, ed.), Queen's Papers on Pure and Applied Mathematics No. 40, Queen's University, Kingston, Ontario, 1974; Harriman, J.E., Geometry of density matrices. 2. Reduced density matrices and N-representability (1978) Phys. Rev. A, 17, p. 1257
  • Harriman, J.E., Geometry of density matrices. 3. Spin components (1979) Int. J. Quantum Chem, 15, p. 611
  • Casida, M.E., Harriman, J.E., Geometry of density matrices. 6. Superoperators and unitary invariance (1986) Int. J. Quantum Chem, 30, p. 161
  • Alcoba, D.R., Unitarily invariant decomposition of arbitrary Hermitian matrices of physical interest (2004) Int. J. Quantum Chem, 97, p. 776
  • Valdemoro, C., de Lara-Castells, M.P., Pérez-Romero, E., Tel, L.M., (1997) Second European Workshop on Quantum Systems in Chemistry and Physics, , Oxford
  • Valdemoro, C., de Lara-Castells, M.P., Pérez-Romero, E., Tel, L.M., The first order contracted density equations: Correlation effects (1999) Adv. Quantum Chem, 31, p. 37
  • Valdemoro, C., (1999) Topics in Current Chemistry: Correlation and Localization, , P. R. Surjan, ed, Springer-Verlag, New York
  • Valdemoro, C., Tel, L.M., Pérez-Romero, E., (2000) Quantum Systems in Chemistry and Physics I, , A. Hernández-Laguna, J. Maruani, R. McWeeny, and S. Wilson, eds, Kluwer, Dordrecht, The Netherlands
  • Valdemoro, C., Tel, L.M., Pérez-Romero, E., (2000) Many-Electron Densities and Reduced Density Matrices, , J. Cioslowski, ed, Kluwer, Dordrecht, The Netherlands
  • Valdemoro, C., Tel, L.M., Alcoba, D.R., Pérez-Romero, E., Casquero, F.J., Some basic properties of the correlation matrices (2002) Int. J. Quantum Chem, 90, p. 1555
  • Tel, L.M., Pérez-Romero, E., Valdemoro, C., Casquero, F.J., Cancellation of high-order electron correlation effects corresponding to eigenstates (2001) Int. J. Quantum Chem, 82, p. 131
  • Tel, L.M., Pérez-Romero, E., Valdemoro, C., Casquero, F.J., Compact forms of reduced density matrices (2003) Phys. Rev. A, 67, p. 052504
  • Harriman, J.E., Grassmann products, cumulants, and two-electron reduced density matrices (2002) Phys. Rev. A, 65, p. 052507
  • Alcoba, D.R., (2004) Estudio de las cuestiones cruciales en la solución iterativa de la Ecuación de Schrödinger Contraída, , Ph.D. thesis, Universidad Autónoma de Madrid
  • Alcoba, D.R., Casquero, F.J., Tel, L.M., Pérez-Romero, E., Valdemoro, C., Convergence enhancement in the iterative solution of the second-order contracted Schrödinger equation (2005) Int. J. Quantum Chem, 102, p. 620
  • Coleman, A.J., Absar, I., Reduced Hamiltonian orbitals. 3. Unitarily-invariant decomposition of Hermitian operators (1980) Int. J. Quantum Chem, 18, p. 1279
  • Beste, A., Runge, K., Barlett, R., Ensuring N-representability: Coleman's algorithm (2002) Chem. Phys. Lett, 355, p. 263
  • Coleman, A.J., Necessary conditions for N-representability of reduced density matrices (1972) J. Math. Phys, 13, p. 214
  • Kubo, R., Generalized cumulant expansion method (1962) J. Phys. Soc. Japan, 17, p. 1100
  • Schork, T., Fulde, P., Calculating excitation-energies with the help of cumulants (1994) Int. J. Quantum Chem, 51, p. 113
  • Kladko, K., Fulde, P., On the properties of cumulant expansions (1998) Int. J. Quantum Chem, 66, p. 377
  • Kutzelnigg, W., Mukherjee, D., Cumulant expansion of the reduced density matrices (1999) J. Chem. Phys, 110, p. 2800
  • Harris, F.E., Cumulant-based approximations to reduced density matrices (2002) Int. J. Quantum Chem, 90, p. 105
  • Absar, I., Coleman, A.J., One-electron orbitals intrinsic to reduced Hamiltonian (1976) Chem. Phys. Lett, 39, p. 609
  • Absar, I., Coleman, A.J., Reduced Hamiltonian orbitals. I. New approach to many-electron problem (1976) Int. J. Quantum Chem, 10, p. 319
  • Absar, I., Reduced Hamiltonian orbitals. II. Optimal orbital basis sets for the many-electron problem (1978) Int. J. Quantum Chem, 13, p. 777
  • McWeeny, R., Mizuno, Y., Density matrix in many-electron quantum mechanics. 2. Separation of space and spin variables - spin coupling problems (1961) Proc. R. Soc. London A, 259, p. 554
  • Surjan, P.R., (1989) Second Quantized Approach to Quantum Chemistry: An Elementary Introduction, , Springer-Verlag, Berlin
  • Sun, C.C., Li, X.Q., Tang, A.C., On the unitarily-invariant decomposition of Hermitian operators (1984) Int. J. Quantum Chem, 25, p. 1045
  • Cho, S., (1962) Sci. Rep. Gumma Univ, 11, p. 1
  • Cohen, L., Frishberg, C., Hierarchy equations for reduced density matrices (1976) Phys. Rev. A, 13, p. 927
  • Cohen, L., Frishberg, C., Hartree-Fock density matrix equation (1976) J. Chem. Phys, 65, p. 4234
  • Nakatsuji, H., Equation for direct determination of density matrix (1976) Phys. Rev. A, 14, p. 41
  • Harriman, J.E., Limitation on the density-equation approach to many-electron problem (1979) Phys. Rev. A, 19, p. 1893
  • Valdemoro, C., Approximating the second-order reduced density-matrix in terms of the first-order one (1992) Phys. Rev. A, 45, p. 4462
  • Nakata, M., Ehara, M., Yasuda, K., Nakatsuji, H., Direct determination of second-order density matrix using density equation: Open-shell system and excited state (2000) J. Chem. Phys, 112, p. 8772
  • Nooijen, M., Can the eigenstates of a many-body Hamiltonian be represented exactly using a general two-body cluster expansion? (2000) Phys. Rev. Lett, 84, p. 2108
  • Mazziotti, D.A., Variational method for solving the contracted Schrödinger equation through a projection of the N-particle power method onto the two-particle space (2002) J. Chem. Phys, 116, p. 1239
  • Fernández Rico, J., López, R., Aguado, A., Ema, I., Ramírez, G., Reference program for molecular calculations with Slater-type orbitals (1998) J. Comput. Chem, 19, p. 1284
  • Fernández Rico, J., López, R., Aguado, A., Ema, I., Ramírez, G., New program for molecular calculations with Slater-type orbitals (2000) Int. J. Quantum Chem, 81, p. 148
  • Alcoba, D.R., unpublished results

Citas:

---------- APA ----------
(2007) . Chapter 9: Purification of correlated reduced density matrices: Review and applications. Advances in Chemical Physics, 134, 205-259.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00652385_v134_n_p205_Alcoba [ ]
---------- CHICAGO ----------
Alcoba, D.R. "Chapter 9: Purification of correlated reduced density matrices: Review and applications" . Advances in Chemical Physics 134 (2007) : 205-259.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00652385_v134_n_p205_Alcoba [ ]
---------- MLA ----------
Alcoba, D.R. "Chapter 9: Purification of correlated reduced density matrices: Review and applications" . Advances in Chemical Physics, vol. 134, 2007, pp. 205-259.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00652385_v134_n_p205_Alcoba [ ]
---------- VANCOUVER ----------
Alcoba, D.R. Chapter 9: Purification of correlated reduced density matrices: Review and applications. Adv. Chem. Phys. 2007;134:205-259.
Available from: https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00652385_v134_n_p205_Alcoba [ ]