Artículo

Carando, D.; Defant, A.; García, D.; Maestre, M.; Sevilla-Peris, P. "The Dirichlet-Bohr radius" (2015) Acta Arithmetica. 171(1):23-37
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Denote by Ω(n) the number of prime divisors of n ∈ ℕ (counted with multiplicities). For x ∈ ℕ define the Dirichlet-Bohr radius L(x) to be the best r > 0 such that for every finite Dirichlet polynomial Σn≤xann-s we have ∑n ≤ x |an| rΩ(n) ≤ supt ∈ ℝ | ∑n ≤ x ann-it|. We prove that the asymptotically correct order of L(x) is (log x)1/4x-1/8. Following Bohr's vision our proof links the estimation of L(x) with classical Bohr radii for holomorphic functions in several variables. Moreover, we suggest a general setting which allows translating various results on Bohr radii in a systematic way into results on Dirichlet-Bohr radii, and vice versa. Copyright © 2007-2014 by IMPAN. All rights reserved.

Registro:

Documento: Artículo
Título:The Dirichlet-Bohr radius
Autor:Carando, D.; Defant, A.; García, D.; Maestre, M.; Sevilla-Peris, P.
Filiación:Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pab I, Ciudad Universitaria, Buenos Aires, 1428, Argentina
IMAS, CONICET, Argentina
Institut für Mathematik, Universität Oldenburg, Oldenburg, D26111, Germany
Departamento de Análisis Matemático, Universidad de Valencia, Doctor Moliner 50, Burjasot (Valencia), 46100, Spain
Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Valencia, Spain
Palabras clave:Bohr radius; Dirichlet series; Holomorphic functions
Año:2015
Volumen:171
Número:1
Página de inicio:23
Página de fin:37
DOI: http://dx.doi.org/10.4064/aa171-1-3
Título revista:Acta Arithmetica
Título revista abreviado:Acta Arith.
ISSN:00651036
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00651036_v171_n1_p23_Carando

Referencias:

  • Aizenberg, L., Generalization of Carathéodory's inequality and the Bohr radius for multidimensional power series (2005) Selected Topics in Complex Analysis, Oper. Theory Adv. Appl., 158, pp. 87-94. , Birkhäuser, Basel
  • Balasubramanian, R., Calado, B., Queffélec, H., The Bohr inequality for ordinary Dirichlet series (2006) Studia Math., 175, pp. 285-304
  • Bayart, F., Defant, A., Frerick, L., Maestre, M., Sevilla-Peris, P., (2014) Multipliers of Dirichlet Series and Monomial Series Expansions of Holomorphic Functions in Infinitely Many Variables, , arXiv:1405.7205
  • Bayart, F., Pellegrino, D., Seoane-Sepúlveda, J.B., The Bohr radius of the n-dimensional polydisk is equivalent to √(log n)/n (2014) Adv. Math., 264, pp. 726-746
  • Boas, H.P., Khavinson, D., Bohr's power series theorem in several variables (1997) Proc. Amer. Math. Soc., 125, pp. 2975-2979
  • Bohr, H., Über die Bedeutung der Potenzreihen unendlich vieler Variabeln in der Theorie der Dirichletschen Reihen ∑an/n8 (1913) Nachr. Ges. Wiss. Göttingen Math.-Phys. Kl., pp. 441-488
  • Bohr, H., Über die gleichmäßige Konvergenz Dirichletscher Reihen (1913) J. Reine Angew. Math., 143, pp. 203-211
  • Bohr, H., A theorem concerning power series (1914) Proc. London Math. Soc., 13 (2), pp. 1-5
  • De La-Bretèche, R., Sur l'ordre de grandeur des polynômes de Dirichlet (2008) Acta Arith., 134, pp. 141-148
  • Defant, A., Frerick, L., Ortega-Cerdà, J., Ounaïes, M., Seip, K., The Bohnenblust-Hille inequality for homogeneous polynomials is hypercontractive (2011) Ann. of Math., 174 (2), pp. 485-497
  • Defant, A., García, D., Maestre, M., Bohr's power series theorem and local Banach space theory (2003) J. Reine Angew. Math., 557, pp. 173-197
  • Defant, A., Schwarting, U., Sevilla-Peris, P., Estimates for vector valued Dirichlet polynomials (2014) Monatsh. Math., 175, pp. 89-116
  • Dineen, S., Timoney, R.M., Absolute bases, tensor products and a theorem of Bohr (1989) Studia Math., 94, pp. 227-234
  • Hedenmalm, H., Lindqvist, P., Seip, K., A Hilbert space of Dirichlet series and systems of dilated functions in L2(0,1) (1997) Duke Math. J., 86, pp. 1-37
  • Konyagin, S.V., Queffélec, H., The translation 1/2 in the theory of Dirichlet series (2001) Real Anal. Exchange, 27, pp. 155-175
  • Prachar, K., (1957) Primzahlverteilung, , Springer, Berlin
  • Queffélec, H., H. Bohr's vision of ordinary Dirichlet series; Old and new results (1995) J. Anal., 3, pp. 43-60
  • Queffélec, H., Queffélec, M., (2013) Diophantine Approximation and Dirichlet Series, , Harish-Chandra Research Inst. Lecture Notes 2, Hindustan Book Agency, New Delhi

Citas:

---------- APA ----------
Carando, D., Defant, A., García, D., Maestre, M. & Sevilla-Peris, P. (2015) . The Dirichlet-Bohr radius. Acta Arithmetica, 171(1), 23-37.
http://dx.doi.org/10.4064/aa171-1-3
---------- CHICAGO ----------
Carando, D., Defant, A., García, D., Maestre, M., Sevilla-Peris, P. "The Dirichlet-Bohr radius" . Acta Arithmetica 171, no. 1 (2015) : 23-37.
http://dx.doi.org/10.4064/aa171-1-3
---------- MLA ----------
Carando, D., Defant, A., García, D., Maestre, M., Sevilla-Peris, P. "The Dirichlet-Bohr radius" . Acta Arithmetica, vol. 171, no. 1, 2015, pp. 23-37.
http://dx.doi.org/10.4064/aa171-1-3
---------- VANCOUVER ----------
Carando, D., Defant, A., García, D., Maestre, M., Sevilla-Peris, P. The Dirichlet-Bohr radius. Acta Arith. 2015;171(1):23-37.
http://dx.doi.org/10.4064/aa171-1-3