Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

A route based on calcium phosphate emulsions with addition of glycolic acid as pore former was developed for synthesizing porous nanocrystalline biphasic calcium phosphate ceramics. The method is low cost and gives a biphasic calcium phosphate composed of 88% β-tricalcium phosphate and 12% hydroxyapatite. The material obtained is characterized by scanning electron microscopy, X-ray diffraction and X-ray fluorescence techniques, and the specific surface area is determined by the Brunauer, Emmett and Teller method. The small crystalline domain sizes obtained (68 and 87 nm for β-tricalcium phosphate and hydroxyapatite phases, respectively) allow a major contact reaction and stability in the interphase between the implanted material and natural bone, as well as a better promotion effect on the early bone in-growth. The improvement of the physical, chemical and structural properties by the balanced combination of the ceramic phases, the small crystallite size, the high porosity and high specific surface area obtained is a desirable characteristic in bone tissue engineering and encourages the performance of animal studies in vivo to evaluate their use for applications such as bone replacement in humans. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

Registro:

Documento: Artículo
Título:Synthesis, chemical and microstructural characterization of micro macroporous biphasic calcium phosphate granules
Autor:Garcés Villalá, M.A.; Calvo Guirado, J.L.; Granados, D.; Limandri, S.P.; Galván Josa, V.
Filiación:Facultad de Odontología, Universidad Nacional de Córdoba, Haya de la Torre s/n Ciudad Universitaria, Córdoba, 5016, Argentina
Instituto de Ingeniería Química, Universidad Nacional de San Juan, Libertador San Martín 1109, San Juan, 5400, Argentina
Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, Murcia, 30107, Spain
Facultad de Matemática Astronomía y Física, Universidad Nacional de Córdoba, Medina Allende s/n, Ciudad Universitaria, Córdoba, 5016, Argentina
Instituto de Física Enrique Gaviola, CONICET, Buenos Aires, Argentina
Año:2017
Volumen:46
Número:4
Página de inicio:237
Página de fin:241
DOI: http://dx.doi.org/10.1002/xrs.2762
Título revista:X-Ray Spectrometry
Título revista abreviado:X-Ray Spectrom.
ISSN:00498246
CODEN:XRSPA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00498246_v46_n4_p237_GarcesVillala

Referencias:

  • Jones, J.R., Hench, L.L., Materials perspective. Biomedical materials for new millennium: perspective on the future (2001) Mater Sci Technol, 17, pp. 891-900
  • Syamchand, S.S., Sony, G., Multifunctional hydroxyapatite nanoparticles for drug delivery and multimodal molecular imaging (2015) Microsc Acta, 182, pp. 1567-1589
  • Kannan, S., Goetz-Neunhoeffer, F., Neubauer, J., Ferreira, J.M.F., Ionic substitutions in biphasic hydroxyapatite and β-tricalcium phosphate mixtures: structural analysis by Rietveld refinement (2008) J Am Ceram Soc, 91, pp. 1-12
  • Legeros, R.Z., Lin, S., Rohanizadeh, R., Mijares, D., Legeros, P., Biphasic calcium phosphate bioceramics: preparation, properties and applications (2003) J Mater Sci Mater Med, 14, pp. 201-209
  • Gauthier, O., Bouler, L.M., Aguado, E., Legeros, R.Z., Pilet, P., Daculsi, G., Elaboration conditions influence physicochemical properties and in vivo bioactivity of macroporous biphasic calcium phosphate ceramics (1999) J Mater Sci Mater Med, 10, pp. 199-204
  • Meejoo, S., Maneeprakorn, W., Winotai, P., Phase and thermal stability of nanocrystalline hydroxyapatite prepared via microwave heating (2006) Thermochemical Acta, 447, pp. 115-120
  • Daculsi, G., Laboux, O., Malard, O., Weiss, P., Current state of the art of biphasic calcium phosphate bioceramics (2003) J Mater Sci Mater Med, 14, pp. 195-200
  • Raynaud, S., Champiom, E., Lafon, J.P., Bernache-Assollant, D., Calcium phosphate apatites with variable Ca/P atomic ratio III. Mechanical properties and degradation in solution of hot pressed ceramics (2002) Biomaterials, 23, pp. 1081-1089
  • Roy, M., Fielding, G.A., Bandyopadhyay, A., Bose, S., Effects of zinc and strontium substitution in tricalcium phosphate on osteoclast differentiation and resorption (2013) Biomater Sci, 1, pp. 74-82
  • Bigi, A., Foresti, E., Gandolfi, M., Gazzano, M., Roveri, N., Isomorphous substitutions in betatricalcium phosphate: the different effects of zinc and strontium (1997) J Inorg Biochem, 66, pp. 259-265
  • Suchanek, W., Byrappa, K., Shuk, P., Riman, R., Janas, V., TenHuisen, K.S., Mechanochemical hydrothermal synthesis of calcium phosphate powders with coupled magnesium and carbonate substitution (2004) J Sol St Chem, 177, pp. 793-799
  • Li, X., Sogo, Y., Ito, A., Mutsuzaki, H., Ochiai, N., Kobayashi, T., The optimum zinc content in set calcium phosphate cement for promoting bone formation in vivo (2008) Mater Sci Eng, 29, pp. 969-975
  • Kanchana, P., Sekar, C., Effect of magnesium on the mechanical and bioactive properties of biphasic calcium phosphate (2012) J Min Mat Char Eng, 11, pp. 982-988
  • Marie, P., Ammann, P., Boivin, G., Rey, C., Mechanisms of action and therapeutic potential of strontium in bone (2001) Calcif Tissue Int, 69, pp. 121-129
  • Descamps, M., Hornez, J., Leriche, A., Effects of powder stoichiometry on the sintering of β-tricalcium phosphate (2007) J Eur Ceram Soc, 27, pp. 2401-2406
  • Chappard, D., Guillaume, B., Mallet, R., Pascaretti-Grizon, F., Basle, M.F., Libouban, H., Sinus lift augmentation and b-TCP: a microCT and histologic analysis on human bone biopsies (2010) Micron, 41, pp. 321-326
  • Polak, S.J., Rustom, L.E., Genin, G.M., Talcott, M., Wagoner Johnson, A.J., A mechanism for effective cell-seeding in rigid, microporous substrates (2013) Acta Biomater, 9, pp. 7977-7986
  • Doernberg, M.C., von Rechenberg, B., Bohner, M., Grunenefelder, S., An Lenthe, G., Muller, R., Gasser, B., Auer, J., In vivo behavior of calcium phosphate scaffolds with four different pore sizes (2006) Biomaterials, 27, pp. 5186-5198
  • LeGeros, R., Calcium phosphate materials in restorative dentistry: a review (1988) Adv Dent Res, 2, pp. 164-180
  • Chan, O., Coathup, M.J., Nesbitt, A., Ho, C.Y., Hing, K.A., Buckland, T., Campion, C., Blunn, G.W., The effects of microporosity on osteoinduction of calcium phosphate bone graft substitute biomaterials (2012) Acta Biomater, 8, pp. 2788-2794
  • Hing, K.A., Annaz, B., Saeed, S., Revell, P.A., Buckland, T., Microporosity enhances bioactivity of synthetic bone graft substitutes (2005) J Mater Sci Mater Med, 16, pp. 467-475
  • Brunauer, S., Emmett, P.H., Teller, E., Adsorption of gases in multimolecular layers (1938) J Am Chem Soc, 60, pp. 309-319
  • Young, R., (1993) The Rietveld Method, International Union of Crystallography, , Oxford University Press, Oxford
  • Graziano, A., Daquino, R., Cusella de Angelis, M.G., De Francesco, F., Giordano, A., Laino, G., Piattelli, A., Papaccio, G., Scaffold's surface geometry significantly affects human stem cell bone tissue engineering (2008) J Cell Physiol, 214, pp. 166-172
  • Kwon, S., Jun, Y., Hong, S., Kim, H., Synthesis and dissolution behaviour of βTCP and HA/βTCP composite powders (2003) J Eur Ceram Soc, 23, pp. 1039-1045
  • Ramay, H.R., Zhang, M., Preparation of porous hydroxyapatite scaffolds by combination of the gel-casting and polymer sponge methods (2003) Biomaterials, 24, pp. 3293-3302
  • Gross, U.M., Strunz, V., The anchoring of glass ceramics of different solubility in the femur of the rat (1980) J Biomed Mater Res, 14, pp. 607-618
  • Livingston Arinzeh, T., Tran, T., Mcalary, J., Daculsi, G., A comparative study of biphasic calcium phosphate ceramics for human mesenchymal stem-cell induced bone formation (2005) Biomaterials, 26, pp. 3631-3638
  • Amera, A., Abudalazez, A.M.A., Rashid Ismail, A., Hayati AbdRazak, N., Malik Masudi, S., Rizal Rizal Kasim, S., Arifin Ahmad, Z., Synthesis and characterization of porous biphasic calcium phosphate scaffold from different porogens for possible bones tissue engineering applications (2011) Sci Sinter, 43, pp. 183-192
  • Yashima, M., Takashi Kamiyama, A.S., Hoshikawa, A.J., Crystal structure analysis of β-tricalcium phosphate Ca3(PO4)2 by neutron powder diffraction (2003) Sol State Chem, 175, pp. 272-277
  • Araújo, J.C., Sader, M.S., Moreira, E.L., Moraes, V.C.A., LeGeros, R.Z., Soares, G.A., Maximum substitution of magnesium for calcium sites in Mg-BTCP structure determined by X-ray powder diffraction with the Rietveld refinement (2009) Mater Chem Phys, 118, pp. 337-340
  • Webster, T.J., Ergun, C., Doremus, R.H., Siegel, R.W., Bizios, R., Enhanced functions of osteoblasts on nanophase ceramics (2000) Biomaterials, 21, pp. 1803-1810
  • Li, X., Sogo, Y., Ito, A., Mutsuzaki, H., Ochiai, N., Kobayashi, T., The optimum zinc content in set calcium phosphate cement for promoting bone formation in vivo (2008) Mater Sci Eng, 29, pp. 969-975

Citas:

---------- APA ----------
Garcés Villalá, M.A., Calvo Guirado, J.L., Granados, D., Limandri, S.P. & Galván Josa, V. (2017) . Synthesis, chemical and microstructural characterization of micro macroporous biphasic calcium phosphate granules. X-Ray Spectrometry, 46(4), 237-241.
http://dx.doi.org/10.1002/xrs.2762
---------- CHICAGO ----------
Garcés Villalá, M.A., Calvo Guirado, J.L., Granados, D., Limandri, S.P., Galván Josa, V. "Synthesis, chemical and microstructural characterization of micro macroporous biphasic calcium phosphate granules" . X-Ray Spectrometry 46, no. 4 (2017) : 237-241.
http://dx.doi.org/10.1002/xrs.2762
---------- MLA ----------
Garcés Villalá, M.A., Calvo Guirado, J.L., Granados, D., Limandri, S.P., Galván Josa, V. "Synthesis, chemical and microstructural characterization of micro macroporous biphasic calcium phosphate granules" . X-Ray Spectrometry, vol. 46, no. 4, 2017, pp. 237-241.
http://dx.doi.org/10.1002/xrs.2762
---------- VANCOUVER ----------
Garcés Villalá, M.A., Calvo Guirado, J.L., Granados, D., Limandri, S.P., Galván Josa, V. Synthesis, chemical and microstructural characterization of micro macroporous biphasic calcium phosphate granules. X-Ray Spectrom. 2017;46(4):237-241.
http://dx.doi.org/10.1002/xrs.2762