Artículo

Montenegro, A.C.; Ferreyroa, G.V.; Parolo, M.E.; Tudino, M.B.; Lavado, R.S.; Molina, F.V. "Copper Speciation in Soil: Time Evolution and Effect of Clay Amendment" (2015) Water, Air, and Soil Pollution. 226(9):226-293
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Copper bioavailability, specially to plants, is strongly dependent on its chemical form, as for most metals. Copper-contaminated soil can be treated in situ by the addition of minerals such as Na-bentonite, which mixed with surface soil, can transform this pollutant to non-bioavailable forms. In this work, shelter experiments were conducted to study the time evolution of Cu speciation, in pristine soil as well as in amended one. A selective sequential extraction method was employed to determine the metal speciation in the samples. The results show that the major metal fraction is the organic matter-bound one, whereas the exchangeable fraction is very low, even the first day after Cu addition. The time evolution shows a slow decrease of the organic-bound Cu and a corresponding increase of the most stable mineral fractions. With the addition of Na-bentonite to copper-contaminated soil, the most stable mineral fractions increase whereas the organic-bound one decreases, showing essentially similar time dependence of the several metal fractions. Sodium bentonite could be effectively used for remediation of soils polluted with Cu. © 2015 Springer International Publishing Switzerland.

Registro:

Documento: Artículo
Título:Copper Speciation in Soil: Time Evolution and Effect of Clay Amendment
Autor:Montenegro, A.C.; Ferreyroa, G.V.; Parolo, M.E.; Tudino, M.B.; Lavado, R.S.; Molina, F.V.
Filiación:Instituto de Química Física de Materiales, Ambiente y Energía (INQUIMAE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, piso 1, Buenos Aires, C1428EHA, Argentina
Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas, PROBIEN (CONICET-UNCo), Facultad de Ingeniería, Universidad Nacional Del Comahue, Neuquén 8300, Buenos Aires, 1400, Argentina
Palabras clave:Availability; Bentonite; Heavy Metals; Sequential Selective Extraction; Soil Pollution; Availability; Bentonite; Biochemistry; Copper; Extraction; Heavy metals; Metals; Minerals; Pollution; Remediation; Sodium; Soils; Copper bioavailability; Copper speciations; Copper-contaminated; Exchangeable fraction; Metal speciation; Selective sequential extractions; Sequential selective extractions; Sodium bentonite; Soil pollution; bentonite; copper; organic matter; sodium; bentonite; clay soil; copper; heavy metal; pristine environment; soil amendment; soil pollution; speciation (chemistry); Article; bioavailability; bioremediation; clay; concentration (parameters); evolution; extraction; selective sequential extraction; soil amendment; soil analysis; soil copper speciation; soil pollution; time evolution
Año:2015
Volumen:226
Número:9
Página de inicio:226
Página de fin:293
DOI: http://dx.doi.org/10.1007/s11270-015-2569-1
Título revista:Water, Air, and Soil Pollution
Título revista abreviado:Water Air Soil Pollut.
ISSN:00496979
CODEN:WAPLA
CAS:bentonite, 1302-78-9; copper, 15158-11-9, 7440-50-8; sodium, 7440-23-5
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00496979_v226_n9_p226_Montenegro

Referencias:

  • Adriano, D.C., (2001) Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability, and Risks of Metals, , 2 Springer New York
  • Alloway, B.J., (2012) Heavy Metals in Soils: Trace Metals and Metalloids in Soils and Their Bioavailability, , (3rd ed.). Dordrecht, Netherlands; New York: Springer
  • Bergaya, F., Lagaly, G., General introduction clays, clay minerals, and clay science (2006) Handbook of Clay Science, 1. , F. Bergaya, B. K. G. Theng, & G. Lagaly (Eds.) (1st edition.). Amsterdam; London: Elsevier Science
  • Bourgeault, A., Ciffroy, P., Garnier, C., Cossu-Leguille, C., Masfaraud, J.-F., Charlatchka, R., Garnier, J.-M., Speciation and bioavailability of dissolved copper in different freshwaters: Comparison of modelling, biological and chemical responses in aquatic mosses and gammarids (2013) Science of the Total Environment, 452-453, pp. 68-77
  • Bukka, K., Miller, J.D., Shabtai, J., FTIR study of deuterated montmorillonites: Structural features relevant to pillared clay stability (1992) Clays and Clay Minerals, 40 (1), pp. 92-102
  • Celis, R., Hermosín, M.C., Cornejo, J., Heavy metal adsorption by functionalized clays (2000) Environmental Science & Technology, 34 (21), pp. 4593-4599
  • Covelo, E.F., Vega, F.A., Andrade, M.L., Sorption and desorption of Cd, Cr, Cu, Ni, Pb and Zn by a Fibric Histosol and its organo-mineral fraction (2008) Journal of Hazardous Materials, 159 (2-3), pp. 342-347
  • Dhal, B., Thatoi, H.N., Das, N.N., Pandey, B.D., Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: A review (2013) Journal of Hazardous Materials, 250-251, pp. 272-291
  • (1991) Review and Recommendations for Canadian Interim Environmentals Quality Criteria for Contaminated Sites, , Environment Canada Ottawa: IWD-WQB
  • Ferrari, M., Lutterotti, L., Method for the simultaneous determination of anisotropic residual stresses and texture by xray diffraction (1994) Journal of Applied Physics, 76 (11), pp. 7246-7255
  • Ferreyroa, G.V., Montenegro, A.C., Tudino, M.B., Lavado, R.S., Molina, F.V., Time evolution of Pb(II) speciation in Pampa soil fractions (2014) Chemical Speciation and Bioavailability, 26 (4), pp. 210-218
  • Fonseca, B., Maio, H., Quintelas, C., Teixeira, A., Tavares, T., Retention of Cr(VI) and Pb(II) on a loamy sand soil: Kinetics, equilibria and breakthrough (2009) Chemical Engineering Journal, 152 (1), pp. 212-219
  • Fontes, M., Dos Santos, G., Lability and sorption of heavy metals as related to chemical, physical, and mineralogical characteristics of highly weathered soils (2010) Journal of Soils and Sediments, 10 (4), pp. 774-786
  • Furnare, L.J., Vailionis, A., Strawn, D.G., Polarized XANES and EXAFS spectroscopic investigation into copper(II) complexes on vermiculite (2005) Geochimica et Cosmochimica Acta, 69 (22), pp. 5219-5231
  • Georgopoulos, P.G., Roy, A., Yonone-Lioy, M.J., Opiekun, R.E., Lioy, P.J., Environmental copper: Its dynamics and human exposure issues (2001) Journal of Toxicology and Environmental Health, Part B, 4 (4), pp. 341-394
  • Argentino, G., (1993) Régimen de Desechos Peligrosos, Niveles Guia de Calidad Suelos, , Decreto 831/93
  • Gustafsson, J.P., (2011) Visual Minteq, , KTH, Department of Land and Water Resources Engineering Visual Basic, Stockholm, Sweden
  • Gu, X., Evans, L.J., Barabash, S.J., Modeling the adsorption of Cd (II), Cu (II), Ni (II), Pb (II) and Zn (II) onto montmorillonite (2010) Geochimica et Cosmochimica Acta, 74 (20), pp. 5718-5728
  • Hass, A., Fine, P., Sequential selective extraction procedures for the study of heavy metals in soils, sediments, and waste materials - A critical review (2010) Critical Reviews in Environmental Science and Technology, 40 (5), pp. 365-399
  • Kabala, C., Karczewska, A., Szopka, K., Wilk, J., Copper, zinc, and lead fractions in soils long-term irrigated with municipal wastewater (2011) Communications in Soil Science and Plant Analysis, 42 (8), pp. 905-919
  • Lavado, R.S., Zubillaga, M.S., Alvarez, R., Taboada, M.A., Baseline levels of potentially toxic elements in pampas soils (2004) Soil and Sediment Contamination: An International Journal, 13 (5), pp. 329-339
  • Lerot, L., Effect of swelling on the infrared absorption spectrum of montmorillonite (1976) Clays and Clay Minerals, 24 (4), pp. 191-199
  • Liu, S.-H., Wang, H.P., In situ speciation studies of copper-humic substances in a contaminated soil during electrokinetic remediation (2004) Journal of Environment Quality, 33 (4), pp. 1280-1287
  • Malandrino, M., Abollino, O., Buoso, S., Giacomino, A., La Gioia, C., Mentasti, E., Accumulation of heavy metals from contaminated soil to plants and evaluation of soil remediation by vermiculite (2011) Chemosphere, 82 (2), pp. 169-178
  • Malhotra, V.M., Ogloza, A.A., FTIR spectra of hydroxyls and dehydroxylation kinetics mechanism in montmorillonite (1989) Physics and Chemistry of Minerals, 16 (4), pp. 386-393
  • Mallampati, S.R., Mitoma, Y., Okuda, T., Sakita, S., Kakeda, M., Enhanced heavy metal immobilization in soil by grinding with addition of nanometallic Ca/CaO dispersion mixture (2012) Chemosphere, 89 (6), pp. 717-723
  • Ma, Y.B., Uren, N.C., Transformations of heavy metals added to soil - Application of a new sequential extraction procedure (1998) Geoderma, 84 (1-3), pp. 157-168. , doi:16/S0016-7061(97)00126-2
  • McGrath, S.P., Cegarra, J., Chemical extractability of heavy metals during and after long-term applications of sewage sludge to soil (1992) Journal of Soil Science, 43 (2), pp. 313-321. , 1:CAS:528:DyaK38XlslSiurw%3D
  • Musić, S., Santana, G.P., Šmit, G., Garg, V.K., 57Fe Mössbauer, FT-IR and TEM observations of oxide phases precipitated from concentrated Fe(NO<inf>3</inf>)<inf>3</inf> solutions (1999) Croatica Chemica Acta, 72 (1), pp. 87-102
  • Musso, T.B., Parolo, M.E., Pettinari, G., Francisca, F.M., Cu(II) and Zn(II) adsorption capacity of three different clay liner materials (2014) Journal of Environmental Management, 146, pp. 50-58
  • Musso, T.B., Roehl, K.E., Pettinari, G., Vallés, J.M., Assessment of smectite-rich claystones from Northpatagonia for their use as liner materials in landfills (2010) Applied Clay Science, 48 (3), pp. 438-445. , 1:CAS:528:DC%2BC3cXksFWlsbg%3D
  • Orsetti, S., Quiroga, M.M., Andrade, E.M., Binding of Pb(II) in the system humic acid/goethite at acidic pH (2006) Chemosphere, 65 (11), pp. 2313-2321. , 1:CAS:528:DC%2BD28Xht1CqsbvI
  • Ostrooumov, M., Garduño Monroy, V.H., Servenay, A., Mineralogical and geochemical studies of hardened subsurface layers in soils of the Azufres and Atecuaro volcanic calderas, southwestern Mexico (2005) Canadian Journal of Soil Science, 85 (5), pp. 611-624
  • Rao, C.R.M., Sahuquillo, A., Sanchez, J.F.L., A review of the different methods applied in environmental geochemistry for single and sequential extraction of trace elements in soils and related materials (2008) Water, Air, and Soil Pollution, 189 (1-4), pp. 291-333
  • Ryu, H., Chung, J.S., Nam, T., Moon, H.S., Nam, K., Incorporation of heavy metals bioavailability into risk characterization (2010) CLEAN - Soil, Air, Water, 38 (9), pp. 812-815
  • Sdiri, A., Higashi, T., Hatta, T., Jamoussi, F., Tase, N., Evaluating the adsorptive capacity of montmorillonitic and calcareous clays on the removal of several heavy metals in aqueous systems (2011) Chemical Engineering Journal, 172 (1), pp. 37-46
  • Senesi, N., Loffredo, E., Metal ion complexation by soil humic substances (2005) Chemical Processes in Soils, pp. 563-617. , M.A. Tabatabai D.L. Sparks (eds) Soil Science Society of America Madison, Wisconsin
  • Sipos, P., Németh, T., Kis, V.K., Mohai, I., Sorption of copper, zinc and lead on soil mineral phases (2008) Chemosphere, 73 (4), pp. 461-469
  • Soler-Rovira, P., Madejón, E., Madejón, P., Plaza, C., In situ remediation of metal-contaminated soils with organic amendments: Role of humic acids in copper bioavailability (2010) Chemosphere, 79 (8), pp. 844-849. , 1:CAS:528:DC%2BC3cXkvFCrsro%3D
  • Sparks, D.L., (2002) Environmental Soil Chemistry, , (2nd ed.). San Diego, CA: Academic Press
  • Stadler, M., Schindler, P.W., Modeling of H+ and Cu2+ adsorption on calcium-montmorillonite (1993) Clays and Clay Minerals, 41 (3), pp. 288-296
  • Tessier, A., Campbell, P.G.C., Bisson, M., Sequential extraction procedure for the speciation of particulate trace metals (1979) Analytical Chemistry, 51 (7), pp. 844-851
  • Undabeytia, T., Nir, S., Rytwo, G., Serban, C., Morillo, E., Maqueda, C., Modeling adsorption-desorption processes of Cu on edge and planar sites of Montmorillonite (2002) Environmental Science & Technology, 36 (12), pp. 2677-2683
  • Uriu-Adams, J.Y., Keen, C.L., Copper, oxidative stress, and human health (2005) Molecular Aspects of Medicine, 26 (4-5), pp. 268-298
  • Wenk, H.R., Matthies, S., Lutterotti, L., Texture analysis from diffraction spectra (1994) Materials Science Forum, 157-162, pp. 473-480
  • Wright, R.J., Stuczynski, T., Atomic absorption and flame emission spectrometry (1996) Methods of Soil Analysis. Part 3. Chemical Methods, pp. 65-90. , D.L. Sparks (eds) American Society of Agronomy-Soil Science Society of America Madison, Wisconsin
  • Zhang, J., Dai, J., Wang, R., Li, F., Wang, W., Adsorption and desorption of divalent mercury (Hg2+) on humic acids and fulvic acids extracted from typical soils in China (2009) Colloids and Surfaces A: Physicochemical and Engineering Aspects, 335 (1-3), pp. 194-201. , 1:CAS:528:DC%2BD1MXnsVCgsQ%3D%3D

Citas:

---------- APA ----------
Montenegro, A.C., Ferreyroa, G.V., Parolo, M.E., Tudino, M.B., Lavado, R.S. & Molina, F.V. (2015) . Copper Speciation in Soil: Time Evolution and Effect of Clay Amendment. Water, Air, and Soil Pollution, 226(9), 226-293.
http://dx.doi.org/10.1007/s11270-015-2569-1
---------- CHICAGO ----------
Montenegro, A.C., Ferreyroa, G.V., Parolo, M.E., Tudino, M.B., Lavado, R.S., Molina, F.V. "Copper Speciation in Soil: Time Evolution and Effect of Clay Amendment" . Water, Air, and Soil Pollution 226, no. 9 (2015) : 226-293.
http://dx.doi.org/10.1007/s11270-015-2569-1
---------- MLA ----------
Montenegro, A.C., Ferreyroa, G.V., Parolo, M.E., Tudino, M.B., Lavado, R.S., Molina, F.V. "Copper Speciation in Soil: Time Evolution and Effect of Clay Amendment" . Water, Air, and Soil Pollution, vol. 226, no. 9, 2015, pp. 226-293.
http://dx.doi.org/10.1007/s11270-015-2569-1
---------- VANCOUVER ----------
Montenegro, A.C., Ferreyroa, G.V., Parolo, M.E., Tudino, M.B., Lavado, R.S., Molina, F.V. Copper Speciation in Soil: Time Evolution and Effect of Clay Amendment. Water Air Soil Pollut. 2015;226(9):226-293.
http://dx.doi.org/10.1007/s11270-015-2569-1