Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Cadmium contained in soil and water can be taken up by certain crops and aquatic organisms and accumulate in the food-chain, thus removal of Cd from mining or industrial effluents – i.e. Ni-Cd batteries, electroplating, pigments, fertilizers – becomes mandatory for human health. In parallel, there is an increased interest in the production of luminescent Q-dots for applications in bioimaging, sensors and electronic devices, even the present synthesis methods are economic and environmentally costly. An alternative green pathway for producing Metal chalcogenides (MC: CdS, CdSe, CdTe) nanocrystals is based on the metabolic activity of living organisms. Intracellular and extracellular biosynthesis of can be achieved within a biomimetic approach feeding living organisms with Cd precursors providing new routes for combining bioremediation with green routes for producing MC nanoparticles. In this mini-review we present the state-of-the-art of biosynthesis of MC nanoparticles with a critical discussion of parameters involved and protocols. Few existing examples of scaling-up are also discussed. A modular reactor based on microorganisms entrapped in biocompatible mineral matrices – already proven for bioremediation of dissolved dyes – is proposed for combining both Cd-depletion and MC nanoparticle's production. © 2016

Registro:

Documento: Artículo
Título:Microorganism mediated biosynthesis of metal chalcogenides; a powerful tool to transform toxic effluents into functional nanomaterials
Autor:Vena, M.P.; Jobbágy, M.; Bilmes, S.A.
Filiación:INQUIMAE (CONICET), DQIAQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, Buenos Aires, C1428EHA, Argentina
Palabras clave:Bioremediation; Biosynthesis; Cadmium chalcogenides; Q-dots; Sol-gel; Aquatic organisms; Biochemistry; Biocompatibility; Biology; Biomimetics; Bioremediation; Biosynthesis; Biotechnology; Cadmium; Cadmium sulfide; Chalcogenides; Chemical contamination; Effluents; Enzyme activity; Inorganic compounds; Microorganisms; Nanoparticles; Nickel cadmium batteries; Pollution; Sewage; Sol-gel process; Sol-gels; Biomimetic approaches; Cadmium chalcogenides; Critical discussions; Extracellular biosynthesis; Functional Nano materials; Industrial effluent; Metabolic activity; Q-dots; Chemicals removal (water treatment); cadmium; cadmium selenide; cadmium sulfide; cadmium telluride; calcium alginate; nanomaterial; quantum dot; unclassified drug; cadmium; chalcogen; metal nanoparticle; bioremediation; cadmium; chemical compound; effluent; gel; microorganism; nanoparticle; waste treatment; Article; biocompatibility; biomimetics; bioreactor; bioremediation; biosynthesis; biotechnology; biotransformation; cadmium depletion; cell density; cell encapsulation; clinical protocol; controlled study; depletion; effluent toxicity; membrane reactor; metabolic regulation; microbial growth; microbial metabolism; microbial viability; nonhuman; priority journal; toxicity; bacterium; chemistry; ecosystem restoration; fungus; luminescence; metabolism; microalga; procedures; yeast; Bacteria; Biodegradation, Environmental; Cadmium; Chalcogens; Environmental Restoration and Remediation; Fungi; Luminescence; Metal Nanoparticles; Microalgae; Quantum Dots; Yeasts
Año:2015
Volumen:565
Página de inicio:804
Página de fin:810
DOI: http://dx.doi.org/10.1016/j.scitotenv.2016.04.019
Título revista:Science of the Total Environment
Título revista abreviado:Sci. Total Environ.
ISSN:00489697
CODEN:STEVA
CAS:cadmium, 22537-48-0, 7440-43-9; cadmium selenide, 1306-24-7; cadmium sulfide, 1306-23-6; calcium alginate, 9005-35-0; Cadmium; Chalcogens
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00489697_v565_n_p804_Vena

Referencias:

  • Mittal, A.K., Chisti, Y., Banerjee, U.C., (2013) Biotechnol. Adv., 31 (2), pp. 346-356
  • Malik, A., (2004) Environ. Int., 30 (2), pp. 261-278
  • Boopathy, R., (2000) Bioresour. Technol., 74 (1), pp. 63-67
  • Gadd, G.M., (2010) Microbiol. SGM, 156, pp. 609-643
  • Volesky, B., Holan, Z.R., (1995) Biotechnol. Prog., 11 (3), pp. 235-250
  • Rangabhashiyam, S., Suganya, E., Selvaraju, N., Varghese, L.A., (2014) World J. Microbiol. Biotechnol., 30 (6), pp. 1669-1689
  • Srivastava, S., Agrawal, S.B., Mondal, M.K., (2015) Environ. Sci. Pollut. Res., 22 (20), pp. 15386-15415
  • Febrianto, J., Kosasih, A.N., Sunarso, J., Ju, Y.H., Indraswati, N., Ismadji, S., (2009) J. Hazard. Mater., 162 (2-3), pp. 616-645
  • Allievi, M.C., Sabbione, F., Prado-Acosta, M., Palomino, M.M., Ruzal, S.M., Sanchez-Rivas, C., (2011) J. Microbiol. Biotechnol., 21 (2), pp. 147-153
  • Neilands, J.B., (1995) J. Biol. Chem., 270 (45), pp. 26723-26726
  • Nies, D.H., (1992) Plasmid, 27 (1), pp. 17-28
  • Muyzer, G., Stams, A.J.M., (2008) Nat. Rev. Microbiol., 6 (6), pp. 441-454
  • Chung, J., Nerenberg, R., Rittmann, B.E., (2006) Environ. Sci. Technol., 40 (5), pp. 1664-1671
  • Kim, D.H., Kim, M.G., Jiang, S.H., Lee, J.H., Hur, H.G., (2013) Environ. Sci. Technol., 47 (15), pp. 8709-8715
  • Rajwade, J.M., Paknikar, K.M., (2003) Hydrometallurgy, 71 (1e-2), pp. 243-248
  • Fellowes, J.W., Pattrick, R.A.D., Lloyd, J.R., Charnock, J.M., Coker, V.S., Mosselmans, J.F.W., Weng, T.C., Pearce, C.I., (2013) Nanotechnology, 24 (14)
  • Blakemore, R., (1975) Science, 190 (4212), pp. 377-379
  • Bazylinski, D.A., Frankel, R.B., (2004) Nat. Rev. Microbiol., 2 (3), pp. 217-230
  • Beveridge, T.J., Murray, R.G., (1980) J. Bacteriol., 141 (2), pp. 876-887
  • Klaus, T., Joerger, R., Olsson, E., Granqvist, C.G., (1999) Proc. Natl. Acad. Sci., 96 (24), pp. 13611-13614
  • Shedbalkar, U., Singh, R., Wadhwani, S., Gaidhani, S., Chopade, B.A., (2014) Adv. Colloid Interf. Sci., 209, pp. 40-48
  • Hulkoti, N.I., Taranath, T.C., (2014) Colloids Surf. B: Biointerfaces, 121, pp. 474-483
  • Faramarzi, M.A., Sadighi, A., (2013) Adv. Colloid Interf. Sci., 189, pp. 1-20
  • Iravani, S., (2011) Green Chem., 13 (10), pp. 2638-2650
  • Narayanan, K.B., Sakthivel, N., (2010) Adv. Colloid Interf. Sci., 156 (1-2), pp. 1-13
  • Singh, R., Shedbalkar, U.U., Wadhwani, S.A., Chopade, B.A., (2015) Appl. Microbiol. Biotechnol., 99 (11), pp. 4579-4593
  • Gericke, M., Pinches, A., (2006) Hydrometallurgy, 83 (1-4), pp. 132-140
  • Schröfel, A., Kratosova, G., Safarik, I., Safarikova, M., Raska, I., Shor, L.M., (2014) Acta Biomater., 10 (10), pp. 4023-4042
  • Thomas, R., Janardhanan, A., Varghese, R.T., Soniya, E.V., Mathew, J., Radhakrishnan, E.K., (2014) Braz. J. Microbiol., 45 (4), pp. 1221-1227
  • Mageswari, A., Subramanian, P., Ravindran, V., Yesodharan, S., Bagavan, A., Rahuman, A.A., Karthikeyan, S., Gothandam, K.M., (2015) Environ. Sci. Pollut. Res., 22 (7), pp. 5383-5394
  • Suresh, A.K., Pelletier, D.A., Wang, W., Moon, J.-W., Gu, B., Mortensen, N.P., Allison, D.P., Doktycz, M.J., (2010) Environ. Sci. Technol., 44 (13), pp. 5210-5215
  • Okafor, F., Janen, A., Kukhtareva, T., Edwards, V., Curley, M., (2013) Int. J. Environ. Res. Public Health, 10 (10), pp. 5221-5238
  • Daniel, M.C., Astruc, D., (2004) Chem. Rev., 104 (1), pp. 293-346
  • Cheong, S.S., Watt, J.D., Tilley, R.D., (2010) Nanoscale, 2 (10), pp. 2045-2053
  • Arenz, M., Mayrhofer, K.J.J., Stamenkovic, V., Blizanac, B.B., Tomoyuki, T., Ross, P.N., Markovic, N.M., (2005) J. Am. Chem. Soc., 127 (18), pp. 6819-6829
  • Brayner, R., Barberousse, H., Hernadi, M., Djedjat, C., Yepremian, C., Coradin, T., Livage, J., Coute, A., (2007) J. Nanosci. Nanotechnol., 7 (8), pp. 2696-2708
  • Eroglu, E., Chen, X., Bradshaw, M., Agarwal, V., Zou, J., Stewart, S.G., Duan, X., Iyer, K.S., (2013) RSC Adv., 3 (4), pp. 1009-1012
  • Oger, C., Mahillon, J., Petit, F., (2003) FEMS Microbiol. Ecol., 43 (2), pp. 173-183
  • Koole, R., Groeneveld, E., Vanmaekelbergh, D., Meijerink, A., De Mello Donegá, C., Nanoparticles: Workhorses of Nanoscience (2014), pp. 13-51; Li, X., Xu, H., Chen, Z.S., Chen, G., (2011) J. Nanomater., 2011
  • Durán, N., Seabra, A.B., (2012) Curr. Biotechnol., 1, pp. 287-296
  • Jacob, J.M., Lens, P.N.L., Balakrishnan, R.M., (2016) Microb. Biotechnol., 9 (1), pp. 11-21
  • Zhou, J., Yang, Y., Zhang, C.Y., (2015) Chem. Rev., 115 (21), pp. 11669-11717
  • Bruchez, M., Moronne, M., Gin, P., Weiss, S., Alivisatos, A.P., (1998) Science, 281 (5385), pp. 2013-2016
  • Jamieson, T., Bakhshi, R., Petrova, D., Pocock, R., Imani, M., Seifalian, A.M., (2007) Biomaterials, 28 (31), pp. 4717-4732
  • Rossetti, R., Brus, L., (1982) J. Phys. Chem., 86 (23), pp. 4470-4472
  • Fojtik, A., Weller, H., Koch, U., Henglein, A., (1984) Ber. Bunsenges./Phys. Chem. Chem. Phys., 88 (10), pp. 969-977
  • Murray, C.B., Norris, D.J., Bawendi, M.G., (1993) J. Am. Chem. Soc., 115 (19), pp. 8706-8715
  • Peng, Z.A., Peng, X., (2001) J. Am. Chem. Soc., 123 (1), pp. 183-184
  • Lesnyak, V., Gaponik, N., Eychmuller, A., (2013) Chem. Soc. Rev., 42 (7), pp. 2905-2929
  • Dameron, C.T., Reese, R.N., Mehra, R.K., Kortan, A.R., Carroll, P.J., Steigerwald, M.L., Brus, L.E., Winge, D.R., (1989) Nature, 338 (6216), pp. 596-597
  • Dameron, C.T., Smith, B.R., Winge, D.R., (1989) J. Biol. Chem., 264 (29), pp. 17355-17360
  • Keller, K.L., Rapp-Giles, B.J., Semkiw, E.S., Porat, I., Brown, S.D., Wall, J.D., (2014) Appl. Environ. Microbiol., 80 (3), pp. 855-868
  • Ridley, H., Watts, C.A., Richardson, D.J., Butler, C.S., (2006) Appl. Environ. Microbiol., 72 (8), pp. 5173-5180
  • Suresh, A.K., Doktycz, M.J., Wang, W., Moon, J.-W., Gu, B., Meyer, H.M., III, Hensley, D.K., Pelletier, D.A., (2011) Acta Biomater., 7 (12), pp. 4253-4258
  • Monrás, J.P., Díaz, V., Bravo, D., Montes, R.A., Chasteen, T.G., Osorio-Roman, I.O., Vásquez, C.C., Pérez-Donoso, J.M., (2012) PLoS One, 7 (11)
  • Kominkova, M., Michalek, P., Moulick, A., Nemcova, B., Zitka, O., Kopel, P., Beklova, M., Kizek, R., (2014) Chromatographia, 77 (21 − 22), pp. 1441-1449
  • Bao, H., Lu, Z., Cui, X., Qiao, Y., Guo, J., Anderson, J.M., Li, C.M., (2010) Acta Biomater., 6 (9), pp. 3534-3541
  • Liu, X., Wang, J., Yue, L., Xin, B., Chen, S., Dai, J., Wang, R., Wang, Y., (2015) Bioprocess Biosyst. Eng., 38 (2), pp. 219-227
  • Kang, S.H., Bozhilov, K.N., Myung, N.V., Mulchandani, A., Chen, W., (2008) Angew. Chem. Int. Ed., 47 (28), pp. 5186-5189
  • Bai, H.J., Zhang, Z.M., Guo, Y., Yang, G.E., (2009) Colloids Surf. B: Biointerfaces, 70 (1), pp. 142-146
  • Gallardo, C., Monras, J.P., Plaza, D.O., Collao, B., Saona, L.A., Duran-Toro, V., Venegas, F.A., Perez-Donoso, J.M., (2014) J. Biotechnol., 187, pp. 108-115
  • Suresh, A.K., (2014) Spectrochim. Acta A Mol. Biomol. Spectrosc., 130, pp. 344-349
  • Chen, G., Yi, B., Zeng, G., Niu, Q., Yan, M., Chen, A., Du, J., Zhang, Q., (2014) Colloids Surf. B: Biointerfaces, 117, pp. 199-205
  • Senapati, S., Syed, A., Khan, S., Pasricha, R., Khan, M.I., Kumar, R., Ahmad, A., (2014) Curr. Nanosci., 10 (4), pp. 588-595
  • Ahmad, A., Mukherjee, P., Mandal, D., Senapati, S., Khan, M.I., Kumar, R., Sastry, M., (2002) J. Am. Chem. Soc., 124 (41), pp. 12108-12109
  • Hu, S.X., Lau, K.W.K., Wu, M., (2001) Plant Sci., 161 (5), pp. 987-996
  • Kowshik, M., Deshmukh, N., Vogel, W., Urban, J., Kulkarni, S.K., Paknikar, K.M., (2002) Biotechnol. Bioeng., 78 (5), pp. 583-588
  • Kowshik, M., Vogel, W., Urban, J., Kulkarni, S.K., Paknikar, K.M., (2002) Adv. Mater., 14 (11), pp. 815-818
  • Seshadri, S., Saranya, K., Kowshik, M., (2011) Biotechnol. Prog., 27 (5), pp. 1464-1469
  • Dhillon, G.S., Brar, S.K., Kaur, S., Verma, M., (2012) Crit. Rev. Biotechnol., 32 (1), pp. 49-73
  • Sweeney, R.Y., Mao, C.B., Gao, X.X., Burt, J.L., Belcher, A.M., Georgiou, G., Iverson, B.L., (2004) Chem. Biol., 11 (11), pp. 1553-1559
  • Dameron, C.T., Winge, D.R., (1990) Inorg. Chem., 29 (7), pp. 1343-1348
  • Clemens, S., Simm, C., (2003) New Phytol., 159 (2), pp. 323-330
  • Yang, Z., Lu, L., Berard, V.F., He, Q., Kiely, C.J., Berger, B.W., McIntosh, S., (2015) Green Chem., 17 (7), pp. 3775-3782
  • Stürzenbaum, S.R., Höckner, M., Panneerselvam, A., Levitt, J., Bouillard, J.S., Taniguchi, S., Dailey, L.A., Green, M., (2013) Nat. Nanotechnol., 8 (1), pp. 57-60
  • Ghorbani, H.R., Attar, H., Safekordi, A.A., Sorkhabadi, S.M.R., (2011) Lett. Nanobiotechnol., 6 (2), pp. 71-75
  • Sanghi, R., Verma, P., (2009) Chem. Eng. J., 155 (3), pp. 886-891
  • Muralidhar, R.V., Jayachandran, G., Singh, P., (2001) Curr. Sci., 81 (3), pp. 263-269
  • Murua, A., Portero, A., Orive, G., Hernandez, R.M., de Castro, M., Pedraz, J.L., (2008) J. Control. Release, 132 (2), pp. 76-83
  • Böttcher, H., Soltmann, U., Mertig, M., Pompe, W., (2004) J. Mater. Chem., 14 (14), pp. 2176-2188
  • Coradin, T., Livage, J., (2007) Acc. Chem. Res., 40 (9), pp. 819-826
  • Coradin, T., Amoura, M., Roux, C., Livage, J., Encyclopedia of Industrial Biotechnology (2009), John Wiley & Sons Inc; Ge, X., Eleftheriou, N.M., Dahoumane, S.A., Brennan, J.D., (2013) Anal. Chem., 85 (24), pp. 12108-12117
  • Liu, L., Shang, L., Guo, S., Li, D., Liu, C., Qi, L., Dong, S., (2009) Biosens. Bioelectron., 25 (2), pp. 523-526
  • Avnir, D., Lev, O., Livage, J., (2006) J. Mater. Chem., 16 (11), pp. 1013-1030
  • Pressi, G., Toso, R.D., Monte, R.D., Carturan, G., (2003) J. Sol-Gel Sci. Technol., 26 (1-3), pp. 1189-1193
  • Lèonard, A., Dandoy, P., Danloy, E., Leroux, G., Meunier, C.F., Rooke, J.C., Su, B.L., (2011) Chem. Soc. Rev., 40 (2), pp. 860-885
  • Perullini, M., Jobbagy, M., Mouso, N., Forchiassin, F., Bilmes, S.A., (2010) J. Mater. Chem., 20 (31), pp. 6479-6483
  • Raff, J., Soltmann, U., Matys, S., Selenska-Pobell, S., Böttcher, H., Pompe, W., (2003) Chem. Mater., 15 (1), pp. 240-244
  • Livage, J., (2001) New J. Chem., 25 (1), p. 1
  • Nassif, N., Livage, J., (2011) Chem. Soc. Rev., 40 (2), pp. 849-859
  • Perullini, M., Jobbagy, M., Moretti, M.B., Garcia, S.C., Bilmes, S.A., (2008) Chem. Mater., 20 (9), pp. 3015-3021
  • Perullini, M., Amoura, M., Roux, C., Coradin, T., Livage, J., Japas, M.L., Jobbagy, M., Bilmes, S.A., (2011) J. Mater. Chem., 21 (12), pp. 4546-4552
  • Meunier, C.F., Rooke, J.C., Hajdu, K., Van Cutsem, P., Cambier, P., Léonard, A., Su, B.L., (2010) Langmuir, 26 (9), pp. 6568-6575
  • Pompe, W., Rödel, G., Weiss, H.-J., Mertig, M., Bio-nanomaterials: Designing Materials Inspired by Nature (2013), Wiley-VCH Verlag GmbH & Co·KGaA; Eleftheriou, N.M., Ge, X., Kolesnik, J., Falconer, S.B., Harris, R.J., Khursigara, C., Brown, E.D., Brennan, J.D., (2013) Chem. Mater., 25 (23), pp. 4798-4805
  • Soltmann, U., Böttcher, H., (2008) J. Sol-Gel Sci. Technol., 48 (1-2), pp. 66-72
  • Hunt, N.C., Grover, L.M., (2010) Biotechnol. Lett., 32 (6), pp. 733-742
  • Jen, A.C., Wake, M.C., Mikos, A.G., (1996) Biotechnol. Bioeng., 50 (4), pp. 357-364
  • Nicodemus, G.D., Bryant, S.J., (2008) Tissue Eng. B Rev., 14 (2), pp. 149-165
  • Perullini, M., Calcabrini, M., Jobbágy, M., Bilmes, S.A., (2015) Microporous Biomater., 2, pp. 3-12
  • Bang, S.S., Pazirandeh, M., (1999) J. Microencapsul., 16 (4), pp. 489-499
  • Dash, H.R., Das, S., (2015) Int. Biodeterior. Biodegrad., 103, pp. 179-185
  • Perullini, M., Rivero, M.M., Jobbagy, M., Mentaberry, A., Blimes, S.A., (2007) J. Biotechnol., 127 (3), pp. 542-548
  • Perullini, M., Spedalieri, C., Jobbágy, M., Bilmes, S.A., Hydrogels: Synthesis, Characterization and Applications (2012), pp. 315-328; Perullini, M., Jobbágy, M., Japas, M.L., Bilmes, S.A., (2014) J. Colloid Interface Sci., 425, pp. 91-95
  • Soltmann, U., Matys, S., Kieszig, G., Pompe, W., Böttcher, H., (2010) J. Water Resour. Prot., 2 (2), pp. 115-122
  • Dahoumane, S.A., Djediat, C., Yepremian, C., Coute, A., Fievet, F., Coradin, T., Brayner, R., (2012) Biotechnol. Bioeng., 109 (1), pp. 284-288
  • Sicard, C., Brayner, R., Margueritat, J., Hémadi, M., Couté, A., Yéprémian, C., Djediat, C., Coradin, T., (2010) J. Mater. Chem., 20 (42), pp. 9342-9347

Citas:

---------- APA ----------
Vena, M.P., Jobbágy, M. & Bilmes, S.A. (2015) . Microorganism mediated biosynthesis of metal chalcogenides; a powerful tool to transform toxic effluents into functional nanomaterials. Science of the Total Environment, 565, 804-810.
http://dx.doi.org/10.1016/j.scitotenv.2016.04.019
---------- CHICAGO ----------
Vena, M.P., Jobbágy, M., Bilmes, S.A. "Microorganism mediated biosynthesis of metal chalcogenides; a powerful tool to transform toxic effluents into functional nanomaterials" . Science of the Total Environment 565 (2015) : 804-810.
http://dx.doi.org/10.1016/j.scitotenv.2016.04.019
---------- MLA ----------
Vena, M.P., Jobbágy, M., Bilmes, S.A. "Microorganism mediated biosynthesis of metal chalcogenides; a powerful tool to transform toxic effluents into functional nanomaterials" . Science of the Total Environment, vol. 565, 2015, pp. 804-810.
http://dx.doi.org/10.1016/j.scitotenv.2016.04.019
---------- VANCOUVER ----------
Vena, M.P., Jobbágy, M., Bilmes, S.A. Microorganism mediated biosynthesis of metal chalcogenides; a powerful tool to transform toxic effluents into functional nanomaterials. Sci. Total Environ. 2015;565:804-810.
http://dx.doi.org/10.1016/j.scitotenv.2016.04.019