Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Water yield is a key ecosystem service in river basins and especially in dry regions around the World. In this study we carry out a modelling analysis of water yields in the Chubut River basin, located in one of the driest districts of Patagonia, Argentina. We focus on the uncertainty around precipitation data, a driver of paramount importance for water yield. The objectives of this study are to: i) explore the spatial and numeric differences among six widely used global precipitation datasets for this region, ii) test them against data from independent ground stations, and iii) explore the effects of precipitation data uncertainty on simulations of water yield. The simulations were performed using the ecosystem services model InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs) with each of the six different precipitation datasets as input. Our results show marked differences among datasets for the Chubut watershed region, both in the magnitude of precipitations and their spatial arrangement. Five of the precipitation databases overestimate the precipitation over the basin by 50% or more, particularly over the more humid western range. Meanwhile, the remaining dataset (Tropical Rainfall Measuring Mission - TRMM), based on satellite measurements, adjusts well to the observed rainfall in different stations throughout the watershed and provides a better representation of the precipitation gradient characteristic of the rain shadow of the Andes. The observed differences among datasets in the representation of the rainfall gradient translate into large differences in water yield simulations. Errors in precipitation of +. 30% (-30%) amplify to water yield errors ranging from 50 to 150% (-45 to -60%) in some sub-basins. These results highlight the importance of assessing uncertainties in main input data when quantifying and mapping ecosystem services with biophysical models and cautions about the undisputed use of global environmental datasets. © 2015 Elsevier B.V.

Registro:

Documento: Artículo
Título:Getting water right: A case study in water yield modelling based on precipitation data
Autor:Pessacg, N.; Flaherty, S.; Brandizi, L.; Solman, S.; Pascual, M.
Filiación:Centro Nacional Patagónico (CENPAT/CONICET), Blvrd. Brown 2825, Puerto Madryn, Chubut, U9120ACF, Argentina
Centro de Investigaciones del Mar y la Atmósfera (CIMA/CONICET-UBA), DCAO/FCEN, UMI IFAECI/CNRS, Ciudad Universitaria Pabellón II Piso 2, Buenos Aires, C1428EGA, Argentina
Palabras clave:Chubut River Basin; Ecosystem services modelling; Precipitation data; Uncertainties; Water yield; Ecology; Ecosystems; Rain; Rain gages; Rivers; Uncertainty analysis; Water resources; Watersheds; Ecosystem services modelling; Precipitation data; River basins; Uncertainties; Water yield; Precipitation (meteorology); water; ecosystem service; hydrological modeling; precipitation (climatology); river basin; uncertainty analysis; water yield; Article; ecosystem; humidity; hydrology; precipitation; priority journal; river basin; simulation; water analysis; water supply; water yield; watershed; Andes; Argentina; Chubut; Chubut River; Patagonia
Año:2015
Volumen:537
Página de inicio:225
Página de fin:234
DOI: http://dx.doi.org/10.1016/j.scitotenv.2015.07.148
Título revista:Science of the Total Environment
Título revista abreviado:Sci. Total Environ.
ISSN:00489697
CODEN:STEVA
CAS:water, 7732-18-5
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00489697_v537_n_p225_Pessacg

Referencias:

  • Allen, R.G., Pereira, L.S., Raes, D., Smith, M., (1998) Crop evapotranspiration, irrigation and drainage, 56. , FAO, Rome, Italy
  • Budyko, M.I., (1974) Climate and Life, pp. 321-330. , Academic, San Diego, CA, USA, (translated from Russian by: Miller, D. H.)
  • Canadell, J., Jackson, R.B., Ehleringer, J.R., Mooney, H.A., Sala, O.E., Schulze, E.-D., 1996: maximum rooting depth of vegetation types at the global scale (1996) Oecologia, 108, pp. 583-595
  • Commendatore, M., Esteves, J.L., Natural and anthropogenic hydrocarbons in sediments from the Chubut River (Patagonia, Argentina) (2004) Mar. Pollut. Bull., 48 (9-10), pp. 910-918
  • Daly, C., Neilson, R.P., Philips, D.L., A statistical - topographic model for mapping climatological precipitation over mountainous terrain (1994) J. Appl. Meteorol., 33, pp. 140-158
  • Donohue, R.J., Roderick, M.L., McVicar, T.R., Roots, storms and soil pores: incorporating key ecohydrological processes into Budyko's hydrological model (2012) J. Hydrol., pp. 35-50
  • Duan, Z., Bastiaanssen, W.G.M., Liu, J.Z., Monthly and annual validation of TRMM Multisatellite Precipitation Analysis (TMPA) products in the Caspian Sea Region for the period 1999-2003 (2012) Proceedings of International Geoscience and Remote Sensing Symposium (IGARSS) 2012, Munich, Germany, July 22-27, pp. 3696-3699
  • Ebert, E., Janowiak, J., Kidd, C., Comparison of near-real-time precipitation estimates from satellite observations and numerical models (2007) Bull. Am. Meteorol. Soc., 88, pp. 47-64
  • Garreaud, R., Falvey, M., The coastal winds off western subtropical South America in future climate scenarios (2009) Int. J. Climatol., 20, pp. 543-554
  • Garreaud, R., Lopez, P., Minvielle, M., Rojas, M., (2013) Large-scale control on the Patagonian climate
  • Getirana, A., Espinoza, J.C., Ronchail, J., RotunnoFilho, O.C., Assessment of different precipitation datasets and their impacts on the water balance of the Negro River basin (2011) J. Hydrol., 404 (3-4), pp. 304-322
  • Giraut, M., Ludueña, S., Lupano, C., Valladares, T.A., (2010) Atlas digital de Cuencas y Regiones Hídricas Superficiales de la República Argentina-Versión 2010, , Secretaria de Recursos Hídricos de la República Argentina, (CD Rom)
  • Goyal, R.K., Sensitivity of evapotranspiration to global warming: a case study of arid zone of Rajasthan (India) (2004) Agric. Water Manag., 69, pp. 1-11
  • Groisman, P.Y., Legates, D.R., The accuracy of United States precipitation data (1994) Bull. Am. Meteorol. Soc., 75, pp. 215-227
  • Hamel, P., Guswa, A.J., Uncertainty analysis of a spatially-explicit annual water-balance model: case study of the Cape Fear catchment, NC (2015) Hydrol. Earth Syst. Sci. Discuss., 19, pp. 839-853
  • Huffman, G.J., Algorithm Theoretical Basis Document (ATBD) Version 3.0 for the NASA Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (I-MERG) (2012) GPM Project, p. 29. , http://pmm-dev.pps.eosdis.nasa.gov/sites/default/files/document_files/, (Greenbelt, MD)
  • Huffman, G.J., Adler, R.F., Bolvin, D.T., Gu, G., Nelkin, E.J., Bowman, K.P., Hong, Y., Wolff, D.B., The TRMM multi-satellite precipitation analysis: quasi-global, multi-year, combined-sensor precipitation estimates at fine scale (2007) J. Hydrometeorol., 8 (1), pp. 38-55
  • Insel, N., Poulsen, C., Ehlers, T., Influence of the Andes Mountains on South American moisture transport, convection, and precipitation (2009) Clim. Dyn.
  • Jia, S.F., Zhu, W.B., Lu, A.F., Yan, T.T., A statistical spatial downscaling algorithm of TRMM precipitation based on NDVI and DEM in the Qaidam Basin of China (2011) Remote Sens. Environ., 115, pp. 3069-3079
  • Junzhi, L., A-Xing, Z., Duan, Z., Evaluation of TRMM 3B42 Precipitation product using rain gauge data in Meichuan Waterhshed, Poyang Lake Basin, China (2012) J. Resour. Ecol., 3 (4), pp. 359-366
  • Natural capital, theory and practice of mapping ecosystem services (2011) Biology, , Oxford University Press, P. Kareiva, H. Tallis, T. Ricketts, G. Daily, S. Polasky (Eds.)
  • Legates, D.R., Willmott, C.H., Mean seasonal and spatial variability in gauge-corrected, global precipitation (1990) Int. J. Climatol., 10, pp. 111-127
  • Liang, L., Liu, Q., Streamflow sensitivity analysis to climate change for a large water-limited basin (2014) Hydrol. Process., 28, pp. 1767-1774
  • Liu, S., Costanza, R., Farber, S., Troy, A., Valuing ecosystem services: theory, practice, and the need for a transdisciplinary synthesis (2010) Ann. N. Y. Acad. Sci., 1185, pp. 54-78
  • Luo, Y., Berbery, E., Mitchell, K., The operational Eta Model precipitation and surface hydrologic cycle of the Columbia and Colorado Basins (2005) J. Hydrometeorol., 6, pp. 341-370
  • Milly, P., Climate, soil-water storage, and the average annual water-balance (1994) Water Resour. Res., 30 (7), pp. 2143-2156
  • Mitchell, T.D., Jones, An improved method of constructing a database of monthly climate observations and associated high-resolution grids (2005) Int J Climatology, 25, pp. 693-712. , Royal Meteorological Society
  • Nuñez, M., Solman, S., Cabré, M.F., Regional climate change experiments over southern South America. II: climate change scenarios in the late twenty-first century (2008) Clim. Dyn., 32 (7-8), pp. 1081-1095
  • Paturel, J.E., Servat, E., Vassiliadis, A., Sensitivity of conceptual rainfall-runoff algorithms to errors in input data - case of the GR2M model (1995) J. Hydrol., 168, pp. 111-125
  • Plan Director de Recursos Hídricos del Río, Chubut, (2013) Informe final, tomo I, documento principal, , (In Spanish)
  • Sánchez-Canales, M., López Benito, A., Passuello, A., Terrado, M., Guy, Z., Acuña, V., Schuhmacher, M., Elorza, J., Sensitivity analysis of ecosystem services in a Mediterranean watershed (2012) Sci. Total Environ., 440, pp. 140-153
  • Schneider, U., Becker, A., Finger, P., Meyer-Christoffer, A., Rudolf, B., Ziese, M., (2011) GPCC Full Data Reanalysis Version 6.0 at 0.5°: Monthly Land-Surface Precipitation From Rain-Gauges Built on GTS-based and Historic Data
  • Sharp, R., Tallis, H.T., Ricketts, T., Guerry, A.D., Wood, S.A., Chaplin-Kramer, R., Nelson, E., Hamel, P., InVEST user's guide (2014) The Natural Capital Project, , http://ncp-dev.stanford.edu/~dataportal/invest-releases/documentation/current_release/, last access: June 2014
  • Smith, R., Evans, J., Orographic precipitation and water vapor fractionation over the Southern Andes (2007) J. Hydrometeorol., 8, pp. 3-19
  • Tallis, H., Polasky, S., Mapping and valuing ecosystem services as an approach for conservation and natural-resource management. The year in ecology and conservation biology (2009) Ann. N. Y. Acad. Sci., 1162, pp. 265-283
  • Xu, X., Liu, W., Scanlon, B.R., Zhang, L., Pan, M., Local and global factors controlling water-energy balances within the Budyko framework (2013) Geophys. Res. Lett., 40, pp. 6123-6129
  • Xu, C., Tunemar, L., Chen, Y., Singh, V.P., Evaluation of seasonal and spatial variations of lumped water balance model sensitivity to precipitation data errors (2006) J. Hydrol., 324 (1-4), pp. 80-93
  • Yilmaz, K., Hogue, T., Hsu, K., Sorooshian, S., Gupta, H., Wagener, T., Intercomparison of rain gauge, radar and satellite-based precipitation estimates with emphasis on hydrologic forecasting (2005) J. Hydrometeorol., 6 (4), pp. 497-517

Citas:

---------- APA ----------
Pessacg, N., Flaherty, S., Brandizi, L., Solman, S. & Pascual, M. (2015) . Getting water right: A case study in water yield modelling based on precipitation data. Science of the Total Environment, 537, 225-234.
http://dx.doi.org/10.1016/j.scitotenv.2015.07.148
---------- CHICAGO ----------
Pessacg, N., Flaherty, S., Brandizi, L., Solman, S., Pascual, M. "Getting water right: A case study in water yield modelling based on precipitation data" . Science of the Total Environment 537 (2015) : 225-234.
http://dx.doi.org/10.1016/j.scitotenv.2015.07.148
---------- MLA ----------
Pessacg, N., Flaherty, S., Brandizi, L., Solman, S., Pascual, M. "Getting water right: A case study in water yield modelling based on precipitation data" . Science of the Total Environment, vol. 537, 2015, pp. 225-234.
http://dx.doi.org/10.1016/j.scitotenv.2015.07.148
---------- VANCOUVER ----------
Pessacg, N., Flaherty, S., Brandizi, L., Solman, S., Pascual, M. Getting water right: A case study in water yield modelling based on precipitation data. Sci. Total Environ. 2015;537:225-234.
http://dx.doi.org/10.1016/j.scitotenv.2015.07.148