Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The physicochemical characteristics of hematite nanoparticles related to their size, surface area and reactivity make them useful for many applications, as well as suitable models to study aggregation kinetics. For several applications (such as remediation of contaminated groundwater) it is crucial to maintain the stability of hematite nanoparticle suspensions in order to assure their arrival to the target place. The use of biopolymers has been proposed as a suitable environmentally friendly option to avoid nanoparticle aggregation and assure their stability. The aim of the present work was to investigate the formation of complexes between hematite nanoparticles and a non-conventional galactomannan (vinal gum - VG) obtained from Prosopis ruscifolia in order to promote hematite nanoparticle coating with a green biopolymer. Zeta potential and size of hematite nanoparticles, VG dispersions and the stability of their mixtures were investigated, as well as the influence of the biopolymer concentration and preparation method. DLS and nanoparticle tracking analysis techniques were used for determining the size and the zeta-potential of the suspensions. VG showed a polydispersed size distribution (300-475. nm Z-average diameter, 0.65. Pdi) and a negative zeta potential (between - 1 and - 12. mV for pH. 2 and 12, respectively). The aggregation of hematite nanoparticles (3.3. mg/L) was induced by the addition of VG at lower concentrations than 2. mg/L (pH. 5.5). On the other hand, hematite nanoparticles were stabilized at concentrations of VG higher than 2. mg/L. Several phenomena between hematite nanoparticles and VG were involved: steric effects, electrostatic interactions, charge neutralization, charge inversion and polymer bridging. The process of complexation between hematite nanoparticles and the biopolymer was strongly influenced by the preparation protocols. It was concluded that the aggregation, dispersion, and stability of hematite nanoparticles depended on biopolymer concentration and also on the way of preparation and initial physicochemical properties of the aqueous system. © 2015 Elsevier B.V.

Registro:

Documento: Artículo
Título:Formation of complexes between hematite nanoparticles and a non-conventional galactomannan gum. Toward a better understanding on interaction processes
Autor:Busch, V.M.; Loosli, F.; Santagapita, P.R.; Buera, M.P.; Stoll, S.
Filiación:Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Ciudad Autonoma de Buenos Aires, C1428EGA, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
Group of Environmental Physical Chemistry, F.-A. Forel Institute, University of Geneva, 10 route de Suisse, Versoix, 1290, Switzerland
Palabras clave:Aggregation kinetics; Hematite nanoparticles; Iron oxides; Polymer-nanoparticle interaction; Vinal gum; Agglomeration; Biomolecules; Biopolymers; Copolymers; Dispersions; Groundwater; Groundwater pollution; Hematite; Iron oxides; Remediation; Stability; Zeta potential; Aggregation kinetics; Hematite nanoparticles; Nanoparticle aggregation; Nanoparticle tracking analysis; Physicochemical characteristics; Physicochemical property; Polymer nanoparticles; Vinal gum; Nanoparticles; galactomannan; hematite nanoparticle; nanoparticle; unclassified drug; vinal gum; ferric ion; ferric oxide; galactomannan; mannan; nanoparticle; aggregation; complexation; hematite; iron oxide; particle size; physicochemical property; polymer; polysaccharide; reaction kinetics; Article; bioremediation; chemical interaction; complex formation; concentration (parameters); dispersion; molecular stability; nonhuman; particle size; pH; physical chemistry; polymerization; priority journal; Prosopis; Prosopis ruscifolia; static electricity; stereochemistry; surface property; zeta potential; chemical model; chemistry; kinetics; Prosopis ruscifolia; Ferric Compounds; Kinetics; Mannans; Models, Chemical; Nanoparticles; Particle Size; Static Electricity
Año:2015
Volumen:532
Página de inicio:556
Página de fin:563
DOI: http://dx.doi.org/10.1016/j.scitotenv.2015.05.134
Título revista:Science of the Total Environment
Título revista abreviado:Sci. Total Environ.
ISSN:00489697
CODEN:STEVA
CAS:galactomannan, 11078-30-1; ferric ion, 20074-52-6; ferric oxide, 1309-37-1, 56449-54-8; mannan, 51395-96-1, 9036-88-8; Ferric Compounds; ferric oxide; galactomannan; Mannans
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00489697_v532_n_p556_Busch

Referencias:

  • Baalousha, M., Aggregation and disaggregation of iron oxide nanoparticles: influence of particle concentration, pH and natural organic matter (2009) Sci. Total Environ., 407, pp. 2093-2101
  • Berry, C., Possible exploitation of magnetic nanoparticle-cell interaction for biomedical applications (2006) J. Mater. Chem., 15, pp. 543-547
  • Busch, V.M., Kolender, A.A., Santagapita, P.R., Buera, M.P., Vinal gum, a galactomannan from Prosopis ruscifolia seeds: physicochemical characterization (2015) Food Hydrocoll.
  • Chaires-Martínez, L., Salazar-Montoya, J.A., Ramos-Ramírez, E.G., Physicochemical and functional characterization of the galactomannan obtained from mesquite seeds (Prosopis pallida) (2008) Eur. Food Res. Technol., 227, pp. 1669-1676
  • Chen, K.L., Mylon, S.E., Elimelech, M., Aggregation kinetics of alginate-coated hematite nanoparticles in monovalent and divalent electrolytes (2006) Environ. Sci. Technol., 40 (5), pp. 1516-1523
  • Comba, S., Sethi, R., Stabilization of highly concentrated suspensions of iron nanoparticles using shear-thinning gels of xanthan gum (2009) Water Res., 43, pp. 3117-3726
  • Cromières, L., Moulin, V., Fourest, B., Giffaut, E., Physico-chemical characterization of the colloidal hematite/water interface: experimentation and modeling (2002) Colloids Surf. A, 202, pp. 101-115
  • Dickson, D., Liu, G., Li, C., Tachiev, G., Cai, Y., Dispersion and stability of bare hematite nanoparticles: effect of dispersion tools, nanoparticle concentration, humic acid and ionic strength (2012) Sci. Total Environ., 419, pp. 170-177
  • Ferretti, R., Stoll, S., Zhang, J., Buffle, J., Flocculation of hematite particles by a comparatively large rigid polysaccharide: schizophyllan (2003) J. Colloid Interface Sci., 266, pp. 328-338
  • Filipe, V., Hawe, A., Jiskoot, W., Critical evaluation of nanoparticle tracking analysis (NTA) by nanosight for the measurement of nanoparticles and protein aggregates (2010) Pharm. Res., 27, pp. 796-810
  • Gómez-Lopera, S.A., Plaza, R.C., Delgado, A.V., Synthesis and characterization of spherical magnetite/biodegradable polymer composite particles (2001) J. Colloid Interface Sci., 240, pp. 40-47
  • Haddarah, A., Bassal, A., Ismail, A., Gaiani, C., Ioannou, I., Charbonnel, C., Hamieh, T., Ghoul, M., The structural characteristics and rheological properties of Lebanese locust bean gum (2014) J. Food Eng., 120, pp. 204-214
  • He, F., Shao, D., Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers (2007) Environ. Sci. Technol., 41 (17), pp. 6216-6221
  • He, Y.T., Wan, J., Tokunaga, T., Kinetic stability of hematite nanoparticles: the effect of particle size (2008) J. Nanoparticle Res., 10, pp. 321-332
  • Illés, E., Tombácz, E., The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles (2006) J. Colloid Interface Sci., 295, pp. 115-123
  • (1996) Methods for Determination of Particle Size Distribution Part 8: Photon Correlation Spectroscopy, , International Organisation for Standardisation (ISO)
  • Jiang, J.S., Gan, Z.F., Yang, Y., Du, B., Qian, M., Zhang, P., A novel magnetic fluid based on starch-coated magnetite nanoparticles functionalized with homing peptide (2009) J. Nanoparticle Res., 11, pp. 1321-1330
  • Li, X., Zhang, W., Sequestration of metal cations with zerovalent iron nanoparticles-A study with high resolution X-ray Photoelectron Spectroscopy (HR-XPS) (2007) J. Phys. Chem. C, 111, pp. 6939-6946
  • Loosli, F., Vitorazi, L., Berret, J.-F., Stoll, S., Towards a better understanding on agglomeration mechanisms and thermodynamic properties of TiO<inf>2</inf> nanoparticles interacting with natural organic matter (2015) Water Res., 80, pp. 139-148
  • Mathur, N.K., (2012) Industrial Galactomannan Polysaccharides, , CRC Press Taylor & Francis Group, Boca Raton
  • McHenry, M.E., Laughlin, D.E., Nano-scale materials development for future magnetic applications (2000) Acta Mater., 48, pp. 223-238
  • Mhlanga, S.S., O'Connor, C.T., McFadzean, B., A study of the relative adsorption of guar onto pure minerals (2012) Miner. Eng., pp. 172-178
  • Nidhin, M., Sreeram, A.J., Nair, B.U., Polysaccharide films as templates in the synthesis of hematite nanostructures with special properties (2012) Appl. Surf. Sci., 258, pp. 5179-5184
  • Palomino, D., Stoll, S., Fulvic acids concentration and pH influence on the stability of hematite nanoparticles in aquatic systems (2013) J. Nanoparticle Res., 15, pp. 1428-1436
  • Philippe, S.G.E., Interactions of dissolved organic matter with natural and engineered inorganic colloids: a review (2014) Environ. Sci. Technol.
  • Schwertmann, U., Cornell, R.M., (1991) Iron Oxides in the Laboratory: Preparation and Characterization, , Weinheim, VCH
  • Show, D., (1966) Introduction to Colloid and Surface Chemistry, , Butterworth-Heinemann An imprint of Elsevier Science, Oxford
  • Sittikijyothin, W., Torres, D., Gonçalves, M.P., Modelling the rheological behaviour of galactomannan aqueous solutions (2005) Carbohydr. Polym., 59, pp. 339-350
  • Tiraferri, A., Sethi, R., Enhanced transport of zerovalent iron nanoparticules in saturated porous media by guar gum (2009) J. Nanoparticle Res., 11, pp. 635-645
  • Tiraferri, A., Chen, K.L., Sethi, R., Elimelech, M., Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum (2008) J. Colloid Interface Sci., 324, pp. 71-79
  • Tombácz, E., Libor, Z., Illés, E., Majzika, A., Klumpp, E., The role of reactive surface sites and complexation by humic acids in the interaction of clay mineral and iron oxide particles (2004) Org. Geochem., 35, pp. 257-267
  • Wang, J., Somasundaran, P., Study of galactomannose interaction with solids using AFM, IR and allied techniques (2007) J. Colloid Interface Sci., 309, pp. 373-383
  • Wilkinson, K.J., Joz-Roland, A., Buffle, J., Different roles of pedogenic fulvic acids and aquagenic biopolymers on colloid aggregation and stability in freshwaters (1997) Limnol. Oceanogr., 42, pp. I714-I1724
  • Williams, D.N., Gold, K.A., Holoman, T.R.P., Ehrman, S.H., Wilson, S.O., Surface modification of magnetic nanoparticles using gum Arabic (2006) J. Nanoparticle Res., 8, pp. 749-753
  • Xu, P., Zeng, G.M., Huang, D.L., Feng, C.L., Hu, S., Zhao, M.H., Use of iron oxide nanomaterials in wastewater treatment: a review (2012) Sci. Total Environ., 424, pp. 1-10
  • Zhang, W.X., Nanoscale iron particles for environmental remediation: an overview (2003) J. Nanoparticle Res., 5, pp. 323-332

Citas:

---------- APA ----------
Busch, V.M., Loosli, F., Santagapita, P.R., Buera, M.P. & Stoll, S. (2015) . Formation of complexes between hematite nanoparticles and a non-conventional galactomannan gum. Toward a better understanding on interaction processes. Science of the Total Environment, 532, 556-563.
http://dx.doi.org/10.1016/j.scitotenv.2015.05.134
---------- CHICAGO ----------
Busch, V.M., Loosli, F., Santagapita, P.R., Buera, M.P., Stoll, S. "Formation of complexes between hematite nanoparticles and a non-conventional galactomannan gum. Toward a better understanding on interaction processes" . Science of the Total Environment 532 (2015) : 556-563.
http://dx.doi.org/10.1016/j.scitotenv.2015.05.134
---------- MLA ----------
Busch, V.M., Loosli, F., Santagapita, P.R., Buera, M.P., Stoll, S. "Formation of complexes between hematite nanoparticles and a non-conventional galactomannan gum. Toward a better understanding on interaction processes" . Science of the Total Environment, vol. 532, 2015, pp. 556-563.
http://dx.doi.org/10.1016/j.scitotenv.2015.05.134
---------- VANCOUVER ----------
Busch, V.M., Loosli, F., Santagapita, P.R., Buera, M.P., Stoll, S. Formation of complexes between hematite nanoparticles and a non-conventional galactomannan gum. Toward a better understanding on interaction processes. Sci. Total Environ. 2015;532:556-563.
http://dx.doi.org/10.1016/j.scitotenv.2015.05.134