Abstract:
In the finite-dimensional setting, Li and Chen (1985) proposed a method for principal components analysis using projection-pursuit techniques. This procedure was generalized to the functional setting by Bali et al. (2011), where also different penalized estimators were defined to provide smooth functional robust principal component estimators. This paper completes their study by deriving the influence function of the functional related to the principal direction estimators and their size. As is well known, the influence function is a measure of robustness which can also be used for diagnostic purposes. In this sense, the obtained results can be helpful for detecting influential observations for the principal directions. © 2014 Elsevier Inc.
Referencias:
- Aït Sahalia, Y., (1995) The delta method for nonlinear kernel functionals, , (Ph.D. dissertation), University of Chicago
- Bali, J., Boente, G., Principal points and elliptical distributions from the multivariate setting to the functional case (2009) Statist. Probab. Lett., 79, pp. 1858-1865
- Bali, J., Boente, G., Tyler, D.E., Wang, J.L., Robust functional principal components: a projection-pursuit approach (2011) Ann. Statist., 39, pp. 2852-2882
- Beaton, A.E., Tukey, J.W., The fitting of power series, meaning polynomials, illustrated on band-spectroscopic data (1974) Technometrics, 16 (2), pp. 147-185
- Boente, G., Pires, A.M., Rodrigues, I.M., Influence functions and outlier detection under the common principal components model: a robust approach (2002) Biometrika, 89, pp. 861-875
- Boente, G., Pires, A., Rodrigues, I., Detecting influential observations in principal components and common principal components (2010) Comput. Statist. Data Anal., 54, pp. 2967-2975
- Boente, G., Salibian-Barrera, M., Tyler, D., A characterization of elliptical distributions and some optimality properties of principal components for functional data (2014) J. Multivariate Anal., 131, pp. 254-264
- Critchley, F., Influence in principal components analysis (1985) Biometrika, 72, pp. 627-636
- Croux, C., Efficient high-breakdown M-estimators of scale (1994) Statist. Probab. Lett., 19, pp. 371-379
- Croux, C., Haesbroeck, G., Empirical influence functions for robust principal component analysis (1999) Proceedings of the Statistical Computing Section of the American Statistical Association, pp. 201-206. , Am. Statist. Assoc., Alexandria, VA
- Croux, C., Ruiz-Gazen, A., High breakdown estimators for principal components: the projection-pursuit approach revisited (2005) J. Multivariate Anal., 95, pp. 206-226
- Dauxois, J., Pousse, A., Romain, Y., Asymptotic theory for the principal component analysis of a vector random function: Some applications to statistical inference (1982) J. Multivariate Anal., 12, pp. 136-154
- Febrero, M., Galeano, P., González-Manteiga, W., Functional analysis of NOx levels: location and scale estimation and outlier detection (2007) Comput. Statist., 22, pp. 411-427
- Febrero, M., Galeano, P., González-Manteiga, W., Outlier detection in functional data by depth measures, with application to identify abnormal NOx levels (2008) Environmetrics, 19, pp. 331-345
- Fernholz, L.T., Von Mises Calculus for Statistical Functionals (1983) Lecture Notes in Statistics, 19. , Springer Verlag, New York
- Fernholz, L.T., Smoothed versions of statistical functionals (1993) New Directions in Statistical Data Analysis and Robustness, , Springer-Verlag, Basel, CH, S. Morgenthaler, E. Ronchetti, W. Stahel (Eds.)
- Fernholz, L.T., Robustness issues regarding content corrected tolerance limits (2002) Metrika, 55, pp. 53-66
- Flett, T., (1980) Differential Analysis, , Cambridge University Press, Cambridge
- Gervini, D., Robust functional estimation using the spatial median and spherical principal components (2008) Biometrika, 95, pp. 587-600
- Gervini, D., Outlier detection and trimmed estimation for general functional data (2012) Statist. Sinica, 22, pp. 1639-1660
- Huber, P.J., (1981) Robust Statistics, , Wiley
- Hyndman, R.J., Shang, H.L., Rainbow plots, bagplots, and boxplots for functional data (2010) J. Comput. Graph. Statist., 19, pp. 29-45
- Li, G., Chen, Z., Projection-pursuit approach to robust dispersion matrices and principal components: primary theory and Monte Carlo (1985) J. Amer. Statist. Assoc., 80, pp. 759-766
- Locantore, N., Marron, J.S., Simpson, D.G., Tripoli, N., Zhang, J.T., Cohen, K.L., Robust principal components for functional data (with discussion) (1999) TEST, 8, pp. 1-73
- López-Pintado, S., Romo, J., On the concept of depth for functional data (2009) J. Amer. Statist. Assoc., 104, pp. 718-734
- Pison, G., Rousseeuw, P.J., Filzmoser, P., Croux, C., A robust version of principal factor analysis (2000) COMPSTAT: Proceedings in Computational Statistics, pp. 385-390. , Physica-Verlag, Heidelberg, J. Bethlehem, P. van der Heijden (Eds.)
- Pison, G., van Aelst, S., Diagnostic plots for robust multivariate methods (2004) J. Comput. Graph. Statist., 13, pp. 1-20
- Ramsay, J.O., Silverman, B.W., (2005) Functional Data Analysis, , Springer-Verlag, New York
- Rice, J.A., Silverman, B.W., Estimating the mean and covariance structure nonparametrically when the data are curves (1991) J. R. Stat. Soc. Ser. B, 53, pp. 233-243
- Rousseeuw, P.J., van Zomeren, B.C., Unmasking multivariate outliers and leverage points (1990) J. Amer. Statist. Assoc., 85, pp. 633-639
- Sawant, P., Billor, N., Shin, H., Functional outlier detection with robust functional principal component analysis (2011) Comput. Statist., 27, pp. 83-102
- Shi, L., Local influence in principal components analysis (1997) Biometrika, 84, pp. 175-186
- Silverman, B.W., Smoothed functional principal components analysis by choice of norm (1996) Ann. Statist., 24, pp. 1-24
- Sun, Y., Genton, M., Functional Boxplots (2011) J. Comput. Graph. Statist., 20, pp. 316-334
- Sun, Y., Genton, M., Adjusted functional boxplots for spatio-temporal data visualization and outlier detection (2012) Environmetrics, 23, pp. 54-64
- Tamine, J., Smoothed influence function: another view at robust nonparametric regression (2002), Discussion Paper 62, Sonderforschungsbereich 373, Humboldt-Universität zu Berlin; Tukey, J., (1977) Exploratory Data Analysis, , Addison-Wesley, Reading, MA
Citas:
---------- APA ----------
Bali, J.L. & Boente, G.
(2015)
. Influence function of projection-pursuit principal components for functional data. Journal of Multivariate Analysis, 133, 173-199.
http://dx.doi.org/10.1016/j.jmva.2014.09.004---------- CHICAGO ----------
Bali, J.L., Boente, G.
"Influence function of projection-pursuit principal components for functional data"
. Journal of Multivariate Analysis 133
(2015) : 173-199.
http://dx.doi.org/10.1016/j.jmva.2014.09.004---------- MLA ----------
Bali, J.L., Boente, G.
"Influence function of projection-pursuit principal components for functional data"
. Journal of Multivariate Analysis, vol. 133, 2015, pp. 173-199.
http://dx.doi.org/10.1016/j.jmva.2014.09.004---------- VANCOUVER ----------
Bali, J.L., Boente, G. Influence function of projection-pursuit principal components for functional data. J. Multivariate Anal. 2015;133:173-199.
http://dx.doi.org/10.1016/j.jmva.2014.09.004