Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Species diversity is affected by processes operating at multiple spatial scales, although the most relevant scales that contribute to compositional variation and the temporal shifts of the involved mechanisms remain poorly explored. We studied spatial patterns of phytoplankton, rotifers and microcrustacean diversity across scales in a river floodplain system of the Danube in Austria under contrasting hydrological conditions (post-flood versus low water level). The species turnover between water sections (β2) and between wetlands (β3) was the major components of regional diversity for all studied groups, with species turnover between habitats (β1) as a minor contributor. β1 diversity and β2 diversity were lower than expected by chance in most cases, suggesting that communities are more homogeneous than expected at these scales. β3 diversity was higher than expected by chance in many cases, indicating more distinct communities at the wetland level. Patterns were highly similar under different hydrological conditions, indicating no major immediate effect of flood events. Local environmental and spatial factors were similarly important in structuring phytoplankton, rotifer and microcrustacean communities in both hydrological conditions. Relevant environmental factors were spatially structured in post-flood conditions especially between sections, suggesting flood-driven homogenisation within the wetlands. Under low water level, spatial structuring of environment decreased and pure environmental factors gained relevance for phytoplankton and rotifers. Our results suggest that although β2 diversity between water sections is a major component of regional diversity, long-term spatial processes responding to connectivity across the wetland structure phytoplankton, rotifer and microcrustacean communities. Aquatic sections within the limited spatial extent of the remaining floodplain areas appear more homogeneous than expected probably due to flood recurrence over the years. These results highlight that adequate planning of restoration and conservation strategies of floodplain wetlands should consider environmental heterogeneity together with long-term spatial processes. © 2018 The Authors. Freshwater Biology published by John Wiley & Sons Ltd.

Registro:

Documento: Artículo
Título:Plankton metacommunities in floodplain wetlands under contrasting hydrological conditions
Autor:Chaparro, G.; Horváth, Z.; O'Farrell, I.; Ptacnik, R.; Hein, T.
Filiación:WasserCluster Lunz, Lunz am See, Austria
Instituto de Ecología, Genética y Evolución de Buenos Aires, Universidad de Buenos Aires – Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
Institute of Hydrobiology and Aquatic Ecosystem Management, University of Natural Resources and Life Sciences, Vienna, Austria
Palabras clave:beta-diversity; environmental heterogeneity; phytoplankton; spatial scale; zooplankton
Año:2018
Volumen:63
Número:4
Página de inicio:380
Página de fin:391
DOI: http://dx.doi.org/10.1111/fwb.13076
Título revista:Freshwater Biology
Título revista abreviado:Freshw. Biol.
ISSN:00465070
CODEN:FWBLA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00465070_v63_n4_p380_Chaparro

Referencias:

  • (2005) Standard methods for the examination of waters and waste water, , 21st edn, Washington, DC
  • Anderson, M.J., Crist, T.O., Chase, J.M., Vellend, M., Inouye, B.D., Freestone, A.L., Swenson, N.G., Navigating the multiple meanings of B diversity: a roadmap for the practicing ecologist (2011) Ecology Letters, 14, pp. 19-28. , https://doi.org/10.1111/j.1461-0248.2010.01552.x
  • Avigliano, L., Vinocur, A., Chaparro, G., Tell, G., Allende, L., Influence of re-flooding on phytoplankton assemblages in a temperate wetland following prolonged drought (2014) Journal of Limnology, 73, pp. 247-262
  • Baart, I., Gschöpf, C., Blaschke, A.P., Preiner, S., Hein, T., Prediction of potential macrophyte development in response to restoration measures in an urban riverine wetland (2010) Aquatic Botany, 93, pp. 153-162. , https://doi.org/10.1016/j.aquabot.2010.06.002
  • Baranyi, C., Hein, T., Holarek, C., Keckeis, S., Schiemer, F., Zooplankton biomass and community structure in a Danube River floodplain system: Effects of hydrology (2002) Freshwater Biology, 47, pp. 473-482. , https://doi.org/10.1046/j.1365-2427.2002.00822.x
  • Borcard, D., Legendre, P., Avois-Jacquet, C., Tuomisto, H., Dissecting the spatial structure of ecological data at multiple scales (2004) Ecology, 85, pp. 1826-1832. , https://doi.org/10.1890/03-3111
  • Bozelli, R.L., Thomaz, S.M., Padial, A.A., Lopes, P.M., Bini, L.M., Floods decrease zooplankton beta diversity and environmental heterogeneity in an Amazonian floodplain system (2015) Hydrobiologia, 753, pp. 233-241. , https://doi.org/10.1007/s10750-015-2209-1
  • Chaparro, G., Fontanarrosa, M.S., Schiaffino, M.R., de Tezanos Pinto, P., O'Farrell, I., Seasonal-dependence in the responses of biological communities to flood pulses in warm temperate floodplain lakes: Implications for the “alternative stable states” model (2014) Aquatic Sciences, 76, pp. 579-594. , https://doi.org/10.1007/s00027-014-0356-5
  • Chaparro, G., Kandus, P., O'Farrell, I., Effect of spatial heterogeneity on zooplankton diversity: A multi-scale habitat approximation in a floodplain lake (2015) River Research and Applications, 31, pp. 85-97. , https://doi.org/10.1002/rra.2711
  • Costa Bonecker, C., Da Costa, C.L., Machado Velho, L.F., Lansac-Toha, F.A., Diversity and abundance of the planktonic rotifers in different environments of the Upper Paraná River floodplain (Paraná State-Mato Grosso do Sul State, Brazil) (2005) Hydrobiologia, 2005, pp. 405-414. , https://doi.org/10.1007/s10750-005-4283-2
  • Crist, T.O., Veech, J.A., Gering, J.C., Summerville, K.S., Partitioning species diversity across landscapes and regions: A hierarchical analysis of α, β, and γ-diversity (2003) The American Naturalist, 162, pp. 734-743. , https://doi.org/10.1086/378901
  • da Silva, P.G., Medina Hernández, M.I., Scale-dependence of processes structuring dung beetle metacommunities using functional diversity and community deconstruction approaches (2015) PLoS ONE, 10 (3). , https://doi.org/10.1371/journal.pone.0123030
  • Datry, T., Bonada, N., Heino, J., Towards understanding the organisation of metacommunities in highly dynamic ecological systems (2016) Oikos, 125, pp. 149-159. , https://doi.org/10.1111/oik.02922
  • De Bie, T., De Meester, L., Brendonck, L., Martens, K., Goddeeris, B., Ercken, D., Declerck, S.A.J., Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms (2012) Ecology Letters, 15, pp. 740-747. , https://doi.org/10.1111/j.1461-0248.2012.01794.x
  • Declerck, S.A.J., Coronel, J.S., Legendre, P., Brendonck, L., Scale dependency of processes structuring metacommunities of cladocerans in temporary pools of High-Andes wetlands (2011) Ecography, 34, pp. 296-305. , https://doi.org/10.1111/j.1600-0587.2010.06462.x
  • Devercelli, M., Phytoplankton of the Paraná River Basin (2014) Advances in Limnology, 65, pp. 39-65. , https://doi.org/10.1127/1612-166X/2014/0065-0033
  • Dias, J.D., Simões, N.R., Meerhoff, M., Lansac-Toha, F.A., Velho, L.F.M., Bonecker, C.C., Hydrological dynamics drives zooplankton metacommunity structure in a Neotropical floodplain (2016) Hydrobiologia, 781, pp. 109-125. , https://doi.org/10.1007/s10750-016-2827-2
  • Dittrich, J., Deo Dias, J., Costa Bonecker, C., Lansac-Tôha, F.A., Padial, A.A., Importance of temporal variability at different spatial scales for diversity of floodplain aquatic communities (2016) Freshwater Biology, 61, pp. 316-327. , https://doi.org/10.1111/fwb.12705
  • Dray, S., (2013) packfor: Forward selection with permutation (Canoco p.46). R package ver. 0.0-8/r100
  • Dray, S., Legendre, P., Peres Neto, P.R., Spatial modelling: A comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM) (2006) Ecological Modelling, 196, pp. 483-493. , https://doi.org/10.1016/j.ecolmodel.2006.02.015
  • Dray, S., Pélissier, R., Couteron, P., Fortin, M.J., Legendre, P., Peres-Neto, P.R., Wagner, H.H., Community ecology in the age of multivariate multiscale spatial analysis (2012) Ecological Monographs, 82, pp. 257-275. , https://doi.org/10.1890/11-1183.1
  • Duggan, I.C., Green, J.D., Thompson, K., Shiel, R.J., The influence of macrophytes on the spatial distribution of littoral rotifers (2001) Freshwater Biology, 46, pp. 777-786. , https://doi.org/10.1046/j.1365-2427.2001.00718.x
  • Eberlein, K., Kattner, G., Automatic method for the determination of orthophosphate and dissolved phosphorus in the marine environment (1987) Fresenius’ Journal of Analytical Chemistry, 326, pp. 354-357. , https://doi.org/10.1007/BF00469784
  • Einsle, U., (1993) Crustacea. Copepoda. Calanoida und Cyclopoida, Süßwasserfauna von Mitteleuropa, , Stuttgart, Germany, Gustav Fischer Verlag
  • Fernandes, I.M., Henriques-Silva, R., Jerry, P., Jansen, Z., Peres-Neto, P.R., Spatiotemporal dynamics in a seasonal metacommunity structure is predictable: The case of floodplain-fish communities (2014) Ecography, 37, pp. 1-12
  • Ferreiro, N., Giorgi, A., Feijoo, C., Effects of macrophyte architecture and leaf shape complexity on structural parameters of the epiphytic algal community in a Pampean stream (2013) Aquatic Ecology, 47, pp. 389-401. , https://doi.org/10.1007/s10452-013-9452-1
  • Flössner, D., (2000) Die Haplopoda und Cladocera (ohne Bosminidae) Mitteleuropas, , Leiden, the Netherlands, Backhuys Publishers
  • Funk, A., Schiemer, F., Reckendorfer, W., Metacommunity structure of aquatic gastropods in a river floodplain: The role of niche breadth and drift propensity (2013) Freshwater Biology, 58, pp. 2505-2516. , https://doi.org/10.1111/fwb.12228
  • Gallardo, B., Gascón, S., González-Sanchís, M., Cabezas, A., Comín, F.A., Modelling the response of floodplain aquatic assemblages across the lateral hydrological connectivity gradient (2009) Marine and Freshwater Research, 60, pp. 924-935. , https://doi.org/10.1071/MF08277
  • Gaston, K.J., Global patterns in biodiversity (2000) Nature, 405, pp. 220-227. , https://doi.org/10.1038/35012228
  • Heiler, G., Hein, T., Schiemer, F., Bornette, G., Hydrological connectivity and flood pulses as the central aspects for the integrity of a river-floodplain system (1995) River Research and Applications, 11, pp. 351-361
  • Hein, T., Baranyi, C., Reckendorfer, W., Schiemer, F., The impact of surface water exchange on the nutrient and particle dynamics in side-arms along the River Danube, Austria (2004) Science of the Total Environment, 328, pp. 207-218. , https://doi.org/10.1016/j.scitotenv.2004.01.006
  • Heino, J., Taxonomic surrogacy, numerical resolution and responses of stream macroinvertebrate communities to ecological gradients: Are the inferences transferable among regions? (2014) Ecological Indicators, 36, pp. 186-194. , https://doi.org/10.1016/j.ecolind.2013.07.022
  • Heino, J., Grönroos, M., Does environmental heterogeneity affect species co-occurrence in ecological guilds across stream macroinvertebrate metacommunities? (2013) Ecography, 36, pp. 926-936. , https://doi.org/10.1111/j.1600-0587.2012.00057.x
  • Heino, J., Melo, A.S., Bini, L.M., Reconceptualising the beta diversity-environmental heterogeneity relationship in running water systems (2015) Freshwater Biology, 60, pp. 223-235. , https://doi.org/10.1111/fwb.12502
  • Heino, J., Melo, A.S., Siqueira, T., Soininen, J., Valanko, S., Bini, L.M., Metacommunity organisation, spatial extent and dispersal in aquatic systems: Patterns, processes and prospects (2015) Freshwater Biology, 60, pp. 845-869. , https://doi.org/10.1111/fwb.12533
  • Heino, J., Soininen, J., Alahuhta, J., Lappalainen, J., Virtanen, R., Metacommunity ecology meets biogeography: Effects of geographical region, spatial dynamics and environmental filtering on community structure in aquatic organisms (2016) Oecologia, 183, pp. 121-137. , https://doi.org/10.1007/s00442-016-3750-y
  • (1996) Water quality – Determination of nitrite nitrogen and nitrate nitrogen and the sum of both by flow analysis (CFA and FIA) and spectrometric detection
  • Water quality – Determination of orthophosphate and total phosphorus contents by flow analysis (FIA and CFA) – Part 2: Method by continuous flow analysis (CFA), 06-2001
  • Ivancic, I., Deggobis, D., An optimal manual procedure for ammonia analysis in natural waters by the indophenol blue method (1984) Water Research, 18, pp. 1143-1147. , https://doi.org/10.1016/0043-1354(84)90230-6
  • Jeffrey, S.W., Humphrey, G.F., New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton (1975) Biochemie und Physiologie der Pflanzen, 167, pp. 191-194. , https://doi.org/10.1016/S0015-3796(17)30778-3
  • Jenkins, K.M., Boulton, A.J., Connectivity in a dryland river: Short-term aquatic microinvertebrate recruitment following floodplain inundation (2003) Ecology, 84, pp. 2708-2723. , https://doi.org/10.1890/02-0326
  • José de Paggi, S., Muñoz, S., Frau, D., Paggi, J.C., Scarabotti, P., Devercelli, M., Meerhoff, M., Horizontal distribution of rotifers in a subtropical shallow lake (Paraná floodplain, Argentina) (2012) Fundamental and Applied. Limnology, 180, pp. 321-333. , https://doi.org/10.1127/1863-9135/2012/0245
  • Junk, W.J., Bayley, P.B., Sparks, R.E., The flood pulse concept in river floodplains systems – Proceedings of the international large river symposium (1989) Canadian Special Publication of Fisheries and Aquatic Sciences, 106, pp. 110-127
  • Kempers, A.J., Luft, A.G., Re-examination of the determination of environmental nitrate as nitrite by reduction with hydrazine (1988) The Analyst, 113, pp. 1117-1120. , https://doi.org/10.1039/an9881301117
  • Koste, W., (1978) Rotatoria. Die Rädertiere Mitteleuropas, , 2nd ed, Berlin; Stuttgart, Germany, Gebrüder Bornträger
  • Lansac-Toha, F.M., Meira, B.R., Segovia, B.T., Lansac-Toha, F.A., Velho, L.F.M., Hydrological connectivity determining metacommunity structure of planktonic heterotrophic flagellates (2016) Hydrobiologia, 781, pp. 81-94. , https://doi.org/10.1007/s10750-016-2824-5
  • Legendre, P., Anderson, M.J., Distance-based redundancy analysis: Testing multispecies responses in multifactorial ecological experiments (1999) Ecological Monographs, 69, pp. 1-24. , https://doi.org/10.1890/0012-9615(1999)069[0001:DBRATM]2.0.CO;2
  • Leibold, M.A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J.M., Hoopes, M.F., Gonzalez, A., The metacommunity concept: A framework for multi-scale community ecology (2004) Ecology Letters, 7, pp. 601-613. , https://doi.org/10.1111/j.1461-0248.2004.00608.x
  • Levin, S.A., The problem of pattern and scale in ecology (1992) Ecology, 73, pp. 1943-1967. , https://doi.org/10.2307/1941447
  • Logue, J.B., Mouquet, N., Hannes, P., Hillebrand, H., Empirical approaches to metacommunities: A review and comparison with theory (2011) Trends in Ecology & Evolution, 26, pp. 482-491. , https://doi.org/10.1016/j.tree.2011.04.009
  • Lorenzen, C.J., Determination of chlorophyll and phaeo-pigments: Spectrophotometric equations (1967) Limnology and Oceanography, 12, pp. 343-346. , https://doi.org/10.4319/lo.1967.12.2.0343
  • Matsuda, J.T., Lansac-Tôha, F.A., Martens, K., Machado Velho, L.F., Mormul, R.P., Higuti, J., Diversity of ostracod communities (Crustacea, Ostracoda) across hierarchical spatial levels in a tropical floodplain (2015) Hydrobiologia, 762, pp. 113-126. , https://doi.org/10.1007/s10750-015-2342-x
  • McGill, B.J., Dornelas, M., Gotelli, N.J., Magurran, A.E., Fifteen forms of biodiversity trend in the Anthropocene (2015) Trends in Ecology & Evolution, 30, pp. 104-113. , https://doi.org/10.1016/j.tree.2014.11.006
  • Ng, I.Y.S., Carr, C.M., Cottenie, K., Hierarchical zooplankton metacommunities: Distinguishing between high and limiting dispersal mechanisms (2009) Hydrobiologia, 619, pp. 133-143. , https://doi.org/10.1007/s10750-008-9605-8
  • Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O'Hara, R.B., Wagner, H., (2013) vegan: Community Ecology Package. R package version 2.0-6, , http://CRAN.R-project.org/package=vegan, Retrieved from
  • Padial, A.A., Ceschin, F., Declerck, S.A.J., De Meester, L., Costa Bonecker, C., Lansac-Tôha, F.A., Bini, L.M., Dispersal ability determines the role of environmental, spatial and temporal drivers of metacommunity structure (2014) PLoS ONE, 9. , https://doi.org/10.1371/journal.pone.0111227
  • Paggi, J.C., Mendoza, R.O., Debonis, C.J., José de Paggi, S.B., A simple and inexpensive trap-tube sampler for zooplankton collection in shallow waters (2001) Hydrobiologia, 464, pp. 45-49. , https://doi.org/10.1023/A:1013951431394
  • Paradis, E., Blomberg, S., Bolker, B., Claude, J., Cuong, H.S., Desper, R., de Vienne, D., APE: Analyses of phylogenetics and evolution in R language (2004) Bioinformatics, 20, pp. 289-290. , https://doi.org/10.1093/bioinformatics/btg412
  • Peres-Neto, P.R., Legendre, P., Dray, S., Borcard, D., Variation partitioning of species data matrices: Estimation and comparison of fractions (2006) Ecology, 87, pp. 2614-2625. , https://doi.org/10.1890/0012-9658(2006)87[2614:VPOSDM]2.0.CO;2
  • Pinel-Alloul, B., André, A., Legendre, P., Cardille, J.A., Patalas, K., Salki, A., Large-scale geographic patterns of diversity and community structure of pelagic crustacean zooplankton in Canadian lakes (2013) Global Ecology and Biogeography, 22, pp. 784-795. , https://doi.org/10.1111/geb.12041
  • Reckendorfer, W., Baranyi, C., Funk, A., Schiemer, F., Floodplain restoration by reinforcing hydrological connectivity: Expected effects on aquatic mollusk communities (2006) Journal of Applied Ecology, 43, pp. 474-484. , https://doi.org/10.1111/j.1365-2664.2006.01155.x
  • Reynolds, C., Descy, J.R., The production, biomass and structure of phytoplankton in large rivers (1996) Archiv für Hydrobiologie, 113, pp. 161-187
  • Schagerl, M., Drozdowski, I., Angeler, D.G., Hein, T., Preiner, S., Water age – a major factor controlling phytoplankton community structure in a reconnected dynamic floodplain (Danube, Regelsbrunn, Austria) (2009) Journal of Limnology, 68, pp. 274-287. , https://doi.org/10.4081/jlimnol.2009.274
  • Schiemer, F., Baumgartner, C., Tockner, K., Restoration of floodplain rivers. The ‘Danube Restoration Project’ (1999) Regulated Rivers: Research and Management, 15, pp. 231-244. , https://doi.org/10.1002/(ISSN)1099-1646
  • Shiel, R.J., Green, J.D., Tan, L.W., Microfaunal and resting-stage heterogeneity in ephemeral pools, Upper River Murray floodplain, Australia (2001) Verhandlungen Internationale Vereinigung für Theoretische und Angewandte Limnologie, 27, pp. 3738-3741
  • Simões, N.R., Déo Dias, J., Leal, C.M., de Souza Magalhaes Braghin, L., Lansac-Tôha, F.A., Costa Bonecker, C., Floods control the influence of environmental gradients on the diversity of zooplankton communities in a Neotropical floodplain (2013) Aquatic Sciences, 75, pp. 607-617. , https://doi.org/10.1007/s00027-013-0304-9
  • Sinistro, R., Top-down and bottom-up regulation of planktonic communities in a warm temperate wetland (2010) Journal of Plankton Research, 32, pp. 209-220. , https://doi.org/10.1093/plankt/fbp114
  • Thomaz, S.M., Bini, L.M., Bozelli, M., Floods increase similarity among aquatic habitats in river-floodplain systems (2007) Hydrobiologia, 579, pp. 1-13. , https://doi.org/10.1007/s10750-006-0285-y
  • Thomaz, S.M., Ribeiro Da Cunha, E., The role of macrophytes in habitat structuring in aquatic ecosystems: Methods of measurement, causes and consequences on animal assemblages’ composition and biodiversity (2010) Acta Limnologica Brasiliensia, 22, pp. 218-236. , https://doi.org/10.4322/actalb.02202011
  • Tockner, K., Lorang, M.S., Stanford, J.A., River flood plains are model ecosystems to test general hydrogeomorphic and ecological concepts (2010) River Research and Applications, 26, pp. 76-86. , https://doi.org/10.1002/rra.1328
  • Tockner, K., Malard, F., Ward, J.V., An extension of the flood pulse concept (2000) Hydrological Processes, 14, pp. 2861-2883. , https://doi.org/10.1002/(ISSN)1099-1085
  • Tockner, K., Schiemer, F., Ward, J.V., Conservation by restoration: The management concept for a river-floodplain system on the Danube River in Austria (1998) Aquatic Conservation, 8, pp. 71-86. , https://doi.org/10.1002/(ISSN)1099-0755
  • Tockner, K., Stanford, J.A., Riverine flood plains: Present state and future trends (2002) Environmental Conservation, 29, pp. 308-330
  • Tonkin, J., Stoll, S., Jähnig, S.C., Haase, P., Contrasting metacommunity structure and beta diversity in an aquatic-floodplain system (2016) Oikos, 125, pp. 686-697. , https://doi.org/10.1111/oik.02717
  • Utermöhl, H., Zur vervollkommnung der quantitativen phytoplankton- methodik (1958) Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie, 9, pp. 1-38
  • Van den Brink, F.W.B., Van Katwijk, M.M., Van der Velde, G., Impact of hydrology on phyto- and zooplankton community composition in floodplain lakes along the Lower Rhine and Meuse (1994) Journal of Plankton Research, 16, pp. 351-373. , https://doi.org/10.1093/plankt/16.4.351
  • Vaníčková, I., Seda, J., Macháček, J., Petrusek, A., Effects of extreme floods on the Daphnia ephippial egg bank in a long narrow reservoir (2011) Journal of Limnology, 70, pp. 369-377. , https://doi.org/10.4081/jlimnol.2011.369
  • Ward, J.V., Tockner, K., Arscott, D.B., Claret, C., Riverine landscape diversity (2002) Freshwater Biology, 47, pp. 517-539. , https://doi.org/10.1046/j.1365-2427.2002.00893.x
  • Warfe, D.M., Barmuta, L.A., Habitat structural complexity mediates the foraging success of multiple predator species (2004) Oecologia, 141, pp. 171-178. , https://doi.org/10.1007/s00442-004-1644-x
  • Welti, N., Bondar-Kunze, E., Singer, G., Tritthart, M., Zechmeister-Boltensterne, S., Hein, T., Gilles, P., Large-scale controls on potential respiration and denitrification in riverine. Floodplains (2012) Ecological Engineering, 42, pp. 73-84. , https://doi.org/10.1016/j.ecoleng.2012.02.005
  • Whittaker, R.H., Evolution and measurement of species diversity (1972) Taxon, 21, pp. 213-251. , https://doi.org/10.2307/1218190

Citas:

---------- APA ----------
Chaparro, G., Horváth, Z., O'Farrell, I., Ptacnik, R. & Hein, T. (2018) . Plankton metacommunities in floodplain wetlands under contrasting hydrological conditions. Freshwater Biology, 63(4), 380-391.
http://dx.doi.org/10.1111/fwb.13076
---------- CHICAGO ----------
Chaparro, G., Horváth, Z., O'Farrell, I., Ptacnik, R., Hein, T. "Plankton metacommunities in floodplain wetlands under contrasting hydrological conditions" . Freshwater Biology 63, no. 4 (2018) : 380-391.
http://dx.doi.org/10.1111/fwb.13076
---------- MLA ----------
Chaparro, G., Horváth, Z., O'Farrell, I., Ptacnik, R., Hein, T. "Plankton metacommunities in floodplain wetlands under contrasting hydrological conditions" . Freshwater Biology, vol. 63, no. 4, 2018, pp. 380-391.
http://dx.doi.org/10.1111/fwb.13076
---------- VANCOUVER ----------
Chaparro, G., Horváth, Z., O'Farrell, I., Ptacnik, R., Hein, T. Plankton metacommunities in floodplain wetlands under contrasting hydrological conditions. Freshw. Biol. 2018;63(4):380-391.
http://dx.doi.org/10.1111/fwb.13076