Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Wing dimorphism occurs widely in insects and involves discontinuous variation in a wide variety of traits involved in fight and reproduction. In the current study, we analyzed the spatial pattern of wing dimorphism and intraspecific morphometric variation in nine natural populations of the grasshopper Dichroplus vittatus (Bruner; Orthoptera: Acrididae) in Argentina. Considerable body size differences among populations, between sexes and wing morphs were detected. As a general trend, females were larger than males and macropterous individuals showed increased thorax length over brachypterous which can be explained by the morphological requirements for the development of flight muscles in the thoracic cavity favoring dispersal. Moreover, when comparing wing morphs, a higher phenotypic variability was detected in macropterous females. The frequency of macropterous individuals showed negative correlation with longitude and positive with precipitations, indicating that the macropterous morph is more frequent in the humid eastern part of the studied area. Our results provide valuable about spatial variation of fully winged morph and revealed geographic areas in which the species would experience greater dispersal capacity. © The Author(s) 2018.

Registro:

Documento: Artículo
Título:Spatial Variation in Body Size and Wing Dimorphism Correlates with Environmental Conditions in the Grasshopper Dichroplus vittatus (Orthoptera: Acrididae)
Autor:Rosetti, N.; Remis, M.I.
Filiación:Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, University of Buenos Aires, Buenos Aires, Argentina
Palabras clave:environmental condition; morphometric traits; Orthoptera; wing dimorphism; body size; correlation; dimorphism; dispersal; environmental conditions; grasshopper; morphometry; muscle; phenotype; phenotypic plasticity; precipitation (climatology); reproduction; spatial variation; wing morphology; Argentina; Acrididae; Dichroplus vittatus; Hexapoda; Orthoptera; anatomy and histology; animal; Argentina; body size; Caelifera; environment; female; male; physiology; sex factor; wing; Animals; Argentina; Body Size; Environment; Female; Grasshoppers; Male; Sex Factors; Wings, Animal
Año:2018
Volumen:47
Número:3
Página de inicio:519
Página de fin:526
DOI: http://dx.doi.org/10.1093/ee/nvy025
Título revista:Environmental Entomology
Título revista abreviado:Environ. Entomol.
ISSN:0046225X
CODEN:EVETB
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0046225X_v47_n3_p519_Rosetti

Referencias:

  • Bidau, C.J., Marti, D.A., Dichroplus vittatus (Orthoptera: Acrididae) follows the converse to Bergmann's rule although male morphological variability increases with latitude (2007) Bulletin Ent. Res., 97, pp. 69-79
  • Bidau, C.J., Martí, D.A., Contrasting patterns of sexual size dimorphism in thevgrasshoppers Dichroplus vittatus and D pratensis (Acrididae, Melanoplinae) (2008) J. Orthoptera Res., 17, pp. 201-211
  • Byers, J.W., Evolution of wing reduction in crane flies Diptera (Tipulidae) (1969) Evolution., 23, pp. 346-354
  • Cigliano, M.M., Otte, D., Revision of the Dichroplus maculipennis species group (Orthoptera, Acridoidea, Melanoplinae) (2003) Trans. Am. Entomol. Soc., 129, pp. 133-162
  • Colombo, P.C., Pensel, S., Isabel, R.M., Chromosomal polymorphism, morphometric traits and mating success in Leptysma Argentina (Orthoptera) (2004) Genetica., 121, pp. 25-31
  • Crnokrak, P., Roff, D.A., Fitness differences associated with calling behaviour in the two wing morphs of male sand crickets, Gryllus firmus (1995) Animal Behav., 50, pp. 1475-1481
  • Denno, R.F., The evolution of dispersal polymorphisms in insects: The infuence of habitats, host plants and mates (1994) Res. Popul. Ecol., 36, pp. 127-135
  • Denno, R.F., Roderick, G.K., Olmstead, K.L., Dobel, H.G., Densityrelated migration in planthoppers (Homoptera: Delphacidae): The role of habitat persistence (1991) Am. Nat., 138, pp. 1513-1541
  • Denno, R.E., Roderick, G.K., Peterson, M.A., Huberty, A.F., Dobel, H.G., Eubanks, M.D., Losey, J.E., Langellotto, G.A., Habitat persistence underlies intraspecific variation in the dispersal strategies of planthoppers (1996) Ecol. Monogr., 66, pp. 389-408
  • Dingle, H., Ecology and the evolution of migration (1980) Animal Migration, Orientation and Navigation, pp. 1-101. , In S. A. Gauthreaux, (ed.), Academic Press, New York, NY
  • Dingle, H., Migration (1985) Comprehensive Insect Physiology, Biochemistry and Pharmacology, 9, pp. 375-415. , In G. A. Kerkut and L. I. Gilbert (eds.), Behaviour. Pergamon, New York
  • Feng, B., Zhao, Q., Xu, J., Qin, J., Yang, Z.L., Drainage isolation and climate change-driven population expansion shape the genetic structures of Tuber indicum complex in the Hengduan Mountains region (2016) Sci. Rep., 6, pp. 1-10
  • Fox, C.W., Czesak, M.E., Evolutionary ecology of progeny size in arthropods (2000) Annu. Rev. Entomol., 45, pp. 341-369
  • Guerra, P.A., Evaluating the life-history trade-off between dispersal capability and reproduction in wing dimorphic insects: A meta-analysis (2011) Biol. Rev. Camb. Philos. Soc., 86, pp. 813-835
  • Guerra, P.A., Pollack, G.S., A life history trade-off between flight ability and reproductive behavior in male field crickets (Gryllus texensis) (2007) J. Insect Behav., 20, pp. 377-387
  • Hammer, U.T., Harper, D., Ryan, P., PAST: Paleontological statistics software package for education and data analysis (2001) Palaeontol. Electron., 4, p. 9
  • Harrison, R.G., Dispersal polymorphisms in insects (1980) Annu. Rev. Ecol. Syst., 11, pp. 95-118
  • Ikeda, H., Sota, T., Macroscale evolutionary patterns of flight muscle dimorphism in the carrion beetle Necrophila japonica (2011) Ecol. Evol., 1, pp. 97-105
  • (2008) Grupo InfoStat, , InfoStat Versión. FCA, Universidad Nacional de Cordoba, Cordoba, Argentina
  • Ingrisch, S., Köhler, G., (1998) Die Heuschrecken Mitteleuropas, Vol, , 629. Die Neue Brehm-Bucherei, Westarp Wissenschaften, Magdeburg
  • Javinen, O., Vepsalainen, K., Wing dimorphism as an adaptive strategy in water-striders (Gerris) (1976) Hereditas., 84, pp. 61-68
  • Johansson, F., Stoks, R., Rowe, L., Block, M.D., Life history plasticity in a damselfy: Effects of combined time and biotic constraints (2001) Ecology., 82, pp. 1857-1869
  • Johnson, C.G., (1969) Migration and Dispersal of Insects by Fight, , Methuen &Co. Ltd., London, United Kingdom
  • Jonsson, M., Colonisation ability of the threatened tenebrionid beetle Oplocephala haemorrhoidalis and its common relative Bolitophagus reticulates (2003) Ecol. Entomol., 28, pp. 159-167
  • Kalmus, H., Correlations between flight and vision, and particularly between wings and ocelli, in insects (1945) Proc. R. Entomol. Soc. Lond., A20, pp. 84-96
  • Karr, J.R., James, F.C., (1975) Ecology and Evolution of Communities, , Cambridge, MA: Harvard University Press
  • Kawada, K., Forms and morphs of aphids (1987) Aphids, Their Biology, Natural Enemies and Control, 2 (A), pp. 255-266. , In P. Harrewijn (ed.), Elsevier, Amsterdam, The Netherlands
  • Kring, J.B., Structure of the eyes of the pea aphid, Acyrthosiphon pisum (1977) Ann. Entomol. Soc. Am., 70, pp. 855-860
  • Mackay, P.A., Wellington, W.G., A comparison of the reproductive patterns of apterous and alate virginoparous Acyrthosiphon pisum (Homoptera: Aphididae) (1975) Can Entomol., 107, pp. 1161-1166
  • Masaki, S., Climatic adaptation and photoperiodic response in the band-legged ground cricket (1972) Evolution., 26, pp. 587-600
  • Nardi, C., Fernandes, P.M., Bento, J.M.S., Wing polymorphism and dispersal of Scaptocoris carvalhoi (Hemiptera: Cydnidae) (2008) Ann. Entomol. Soc. Am., 101, pp. 551-557
  • Pener, M.P., Simpson, S.J., Locust phase polyphenism: An update (2009) Adv. Insect Physiol., 36, pp. 1-286
  • Poniatowski, D., Fartmann, T., Experimental evidence for density-determined wing dimorphism in two bush-crickets (Ensifera: Tettigoniidae) (2009) Eur J Entomol., 106, pp. 599-605
  • Rikiya, S., Fusao, N., Kenji, F., Environmental factors determining wing form in the lygaeid bug, dimorphopterus japonicus Heteroptera Lygaeidae (2002) Appl. Entomol. Zool., 372, pp. 329-333
  • Roff, D.A., The cost of being able to fly: A study of wing polymorphism in two species of crickets (1984) Oecologia., 63, pp. 30-37
  • Roff, D.A., The evolution of wing dimorphism in insects (1986) Evolution., 40, pp. 1009-1020
  • Roff, D.A., The evolution of flightlessness in insects (1990) Ecol. Monogr., 60, pp. 389-421
  • Roff, D.A., Bradford, M.J., Quantitative genetics of the trade-off between fecundity and wing dimorphism in the cricket Allonemobius socius (1996) Heredity., 76, pp. 178-185
  • Roff, D.A., Fairbairn, D.J., Wing dimorphisms and the evolution of migratory polymorphisms among the Insecta (1991) Am. Zool., 31, pp. 243-251
  • Roff, D.A., Fairbairn, D.J., Laboratory evolution of the migratory polymorphism in the sand cricket: Combining physiology with quantitative genetics (2007) Physiol. Biochem. Zool., 80, pp. 358-369
  • Sakaluk, S.K., Cryptic female choice predicated on wing dimorphism in decorated crickets (1997) Behav Ecol., 8, pp. 326-331
  • Simpson, S.J., Sword, G.A., Lo, N., Polyphenism in insects (2011) Curr Biol., 21 (18), pp. R738-R749
  • (1996) Statistica 5 for Windows (Computer Program Manual), , Statistica Statsoft Inc. Statistica, Tulsa, OK
  • Steenman, A., Lehmann, A.W., Lehmann, G.U.C., Morphological variation and sex-biased frequency of wing dimorphism in the pygmy grasshopper Tetrix subulata (Orthoptera: Tetrigidae) (2013) Eur. J. Entomol., 110, pp. 535-540
  • Steenmann, A., Lehmann, A., Lehmann, G., Life-history trade-off between macroptery and reproduction in the wing-dimorphic pygmy grasshopper Tetrix subulata (Orthoptera Tetrigidae) (2015) Ethol Ecol Evol., 27, pp. 93-100
  • Southwood, T.R.E., Migration of terrestrial arthropods in relation to habitat (1962) Biol. Rev. Camb. Philos. Soc., 37, pp. 171-214
  • Tanaka, S., Suzuki, Y., Physiological trade-offs between reproduction, flight capability and longevity in a wing-dimorphic cricket, Modicogryllus confirmatus (1998) J. Insect Physiol., 44, pp. 121-129
  • Tsuji, H., Kawada, K., Development and degeneration of wing buds and indirect flight muscles in the pea aphid (Acyrthosiphon pisum (Harris)) (1987) Jpn. J. Appl. Entomol. Zool., 31, pp. 247-252
  • Turk, S.Z., Barrera, M., Acridios del NOA III Estudio bio-ecologico sobre siete especies del genero Dichroplus Stal (Orthoptera, Acrididae) (1979) Acta Zoologica Lilloana., 35, pp. 785-805
  • Van Dyck, H., Matthysen, E., Habitat fragmentation and insect flight: A changing 'design' in a changing landscape? Trends Ecol (1999) Evol., 14, pp. 172-174
  • Zeng, Y., Zhu, D.H., Trade-off between flight capability and reproduction in male Velarifictorus asperses crickets (2012) Ecol. Entomol., 37, pp. 244-251
  • Zeng, Y., Zhu, D.H., Geographical variation in body size, development time, and wing dimorphism in the cricket Velarifictorus micado (Orthoptera: Gryllidae) (2014) Ann. Entomol. Soc. Am., 107 (6), pp. 1066-1071
  • Zera, A.J., Differences in survivorship, development rate and fertility between the longwinged and wingless morphs of the waterstrider, Limnoporus canaliculatus (1984) Evolution., 38, pp. 1023-1032
  • Zera, A.J., Wing polymorphism in Gryllus (Orthoptera: Gryllidae): Proximate endocrine, energetic and biochemical mechanisms underlying morph specialization for flight vs reproduction (2009) Phenotypic Plasticity of Insects: Mechanism and Consequences, pp. 609-653. , In D. W. Whitman &T. N. Ananthakrishnan (eds.), Science Publishers, Enfield, NH
  • Zera, A.J., Juvenile Hormone and the endocrine regulation of wing polymorphism in insects: New insights from circadian and functional-genomic studies in Gryllus crickets (2016) Physiol. Entomol., 41, pp. 313-326
  • Zera, A.J., Brisson, J.A., Induction and function of polyphenic morphs: Proximate regulatory mechanisms and evolutionary implications (2015) Integrative Organismal Biology, pp. 71-90. , In L. B. Martin, C. K. Ghalambor, and H. A. Woods (eds.), John Wiley &Sons, Hoboken, NJ
  • Zera, A.J., Denno, R.F., Physiology and ecology of dispersal polymorphism in insects (1997) Annu. Rev. Entomol., 42, pp. 207-230
  • Zera, A.J., Sall, J., Grudzinski, K., Flight-muscle polymorphism in the cricket Gryllus firmus: Muscle characteristics and their influence on the evolution of flightlessness (1997) Physiol. Zool., 70, pp. 519-529

Citas:

---------- APA ----------
Rosetti, N. & Remis, M.I. (2018) . Spatial Variation in Body Size and Wing Dimorphism Correlates with Environmental Conditions in the Grasshopper Dichroplus vittatus (Orthoptera: Acrididae). Environmental Entomology, 47(3), 519-526.
http://dx.doi.org/10.1093/ee/nvy025
---------- CHICAGO ----------
Rosetti, N., Remis, M.I. "Spatial Variation in Body Size and Wing Dimorphism Correlates with Environmental Conditions in the Grasshopper Dichroplus vittatus (Orthoptera: Acrididae)" . Environmental Entomology 47, no. 3 (2018) : 519-526.
http://dx.doi.org/10.1093/ee/nvy025
---------- MLA ----------
Rosetti, N., Remis, M.I. "Spatial Variation in Body Size and Wing Dimorphism Correlates with Environmental Conditions in the Grasshopper Dichroplus vittatus (Orthoptera: Acrididae)" . Environmental Entomology, vol. 47, no. 3, 2018, pp. 519-526.
http://dx.doi.org/10.1093/ee/nvy025
---------- VANCOUVER ----------
Rosetti, N., Remis, M.I. Spatial Variation in Body Size and Wing Dimorphism Correlates with Environmental Conditions in the Grasshopper Dichroplus vittatus (Orthoptera: Acrididae). Environ. Entomol. 2018;47(3):519-526.
http://dx.doi.org/10.1093/ee/nvy025