Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Azinphos-methyl is an organophosphate insecticide used for pest control on a number of food crops in many parts of the world. The oligochaete Lumbriculus variegatus and pigmented and non-pigmented specimens of the gastropod Biomphalaria glabrata are freshwater invertebrates that have been recommended for contamination studies. Recently, it has been shown that L. variegatus worms exhibit a higher cholinesterase (ChE) activity and a greater sensitivity to in vivo ChE inhibition by azinphos-methyl than pigmented B. glabrata snails. The aims of the present study were (1) to investigate if, in addition to its anticholinesterase action, azinphos-methyl has also pro-oxidant activity in L. variegatus and B. glabrata, and (2) to examine if species that are highly susceptible to the neurotoxic effects of organophosphates also suffer a greater degree of oxidative stress. Therefore, total glutathione (t-GSH) levels and activities of cholinesterase (ChE), superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), and glucose 6-phosphate dehydrogenase (G6PDH) were measured in the whole body soft tissue of organisms exposed for 48 and 96 h to a level of azinphos-methyl that produces 50% of inhibition on ChE. Results showed different patterns of antioxidant responses between the gastropods and the oligochaetes, and even between the two phenotypes of gastropods: (1) in exposed L. variegatus t-GSH levels increased and CAT and SOD activities decreased with respect to control organisms, (2) in pigmented gastropods, SOD decreased while CAT transiently diminished, and (3) in non-pigmented gastropods, SOD activity showed a biphasic response. GST and G6PDH were not altered by azinphos-methyl exposure. Of note, t-GSH levels were 4-fold times higher in L. variegatus than in both phenotypes of B. glabrata. This may suggest that GSH could play a more important role in antioxidant defense in L. variegatus than in B. glabrata. © 2008 Elsevier Ltd. All rights reserved.

Registro:

Documento: Artículo
Título:Effects of azinphos-methyl exposure on enzymatic and non-enzymatic antioxidant defenses in Biomphalaria glabrata and Lumbriculus variegatus
Autor:Kristoff, G.; Verrengia Guerrero, N.R.; Cochón, A.C.
Filiación:Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Nunez, Pabellon II, 4to piso, 1428 Buenos Aires, Argentina
Palabras clave:Catalase; Cholinesterase; Freshwater invertebrate; Glutathione; Organophosphate; Superoxide dismutase; Amperometric sensors; Canning; Enzymes; Food preservation; Glucose; Insect control; Microfluidics; Occupational diseases; Oxygen; Pest control; Photoacoustic effect; Plants (botany); System theory; (abiotic and biotic) stress; Antioxidant defenses; Antioxidant responses; Azinphos methyl (AZP); Biphasic response; Catalase (CAT); Cholinesterase (ChE); Elsevier (CO); food crops; Freshwater invertebrates; Glucose-6-phosphate dehydrogenase (G6PDH); Glutathione (GSH); Glutathione-S-transferase (GST); In-vivo; Neurotoxic effects; Non-enzymatic; SOD activity; soft tissues; Superoxide dismutase (SOD1); Whole body (WB); Agricultural engineering; azinphos methyl; catalase; cholinesterase; glucose 6 phosphate dehydrogenase; glutathione; glutathione transferase; organophosphate; superoxide dismutase; annelid; antioxidant; defense mechanism; enzyme activity; gastropod; insecticide; organophosphate; pollution effect; pollution exposure; animal tissue; annelid worm; antioxidant activity; article; Biomphalaria glabrata; controlled study; enzyme activity; gastropod; Lumbriculus variegatus; neurotoxicity; nonhuman; oxidative stress; phenotype; soft tissue; Animals; Antioxidants; Azinphosmethyl; Biomphalaria; Catalase; Cholinesterases; Enzymes; Glutathione; Glyceraldehyde-3-Phosphate Dehydrogenases; Insecticides; Oligochaeta; Phenotype; Proteins; Superoxide Dismutase; Biomphalaria glabrata; Gastropoda; Invertebrata; Lumbriculus variegatus; Oligochaeta (Metazoa)
Año:2008
Volumen:72
Número:9
Página de inicio:1333
Página de fin:1339
DOI: http://dx.doi.org/10.1016/j.chemosphere.2008.04.026
Título revista:Chemosphere
Título revista abreviado:Chemosphere
ISSN:00456535
CODEN:CMSHA
CAS:azinphos methyl, 86-50-0; catalase, 9001-05-2; cholinesterase, 9001-08-5; glucose 6 phosphate dehydrogenase, 37259-83-9, 9001-40-5; glutathione transferase, 50812-37-8; glutathione, 70-18-8; superoxide dismutase, 37294-21-6, 9016-01-7, 9054-89-1; Antioxidants; Azinphosmethyl, 86-50-0; Catalase, EC 1.11.1.6; Cholinesterases, EC 3.1.1.8; Enzymes; Glutathione, 70-18-8; Glyceraldehyde-3-Phosphate Dehydrogenases, EC 1.2.1.-; Insecticides; Proteins; Superoxide Dismutase, EC 1.15.1.1
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00456535_v72_n9_p1333_Kristoff

Referencias:

  • Abd Allah, A.T., Wanas, M.Q.A., Thompson, S.N., Dissolved heavy metals, lead, cadmium and mercury, accumulate in the body of the schistosome vector, Biomphalaria glabrata (gastropoda: pulmonata) (2003) J. Moll. Stud., 69, pp. 35-41
  • ASTM, American Society for Testing and Materials, 1995. Standard guide for conducting sediment toxicity tests with freshwater invertebrates. E 1393-94a. In: Annual Book of ASTM Standards, vol. 11.05. Philadelphia, PA; Barata, C., Varo, I., Navarro, J.C., Arun, S., Porte, C., Antioxidant enzyme activities and lipid peroxidation in the freshwater cladoceran Daphnia magna exposed to redox cycling compounds (2005) Comp. Biochem. Physiol., 140, pp. 175-186
  • Bender, R.C., Goodall, C.P., Blouin, M.S., Bayne, C.J., Variation in expression of Biomphalaria glabrata SOD1: a potential controlling factor in susceptibility/resistance to Schistosoma mansoni (2007) Dev. Comp. Immunol., 31, pp. 874-878
  • Bonfanti, P., Colombo, A., Orsi, F., Nizzetto, I., Andrioletti, M., Bacchetta, R., Mantecca, P., Vismara, C., Comparative teratogenicity of chlorpyrifos and malathion on Xenopus laevis development (2004) Aqua. Toxicol., 70, pp. 189-200
  • Claiborne, A., Catalase activity (1985) CRC Handbook of Methods for Oxygen Radical Research, pp. 283-284. , Greenwald R. (Ed), CRC Press, Boca Raton, FL
  • Cochón, A.C., Mazzetti, M.B., Kristoff, G., San Martín de Viale, L.C., Verrengia Guerrero, N.R., Effects of paraquat on the freshwater snail Biomphalaria glabrata. Comparison between pigmented and non-pigmented organisms (2004) Biocell, 28 S, p. 65
  • Cochón, A.C., Della Penna, A.B., Kristoff, G., Piol, M.N., San Martín de Viale, L.C., Verrengia Guerrero, N.R., Differential effects of paraquat on oxidative stress parameters and polyamine levels in two freshwater invertebrates (2007) Ecotoxicol. Environ. Saf., 68, pp. 286-292
  • Cooney, J.D., Freshwater tests (1995) Fundamentals of Aquatic Toxicology, pp. 71-102. , Rand G.M. (Ed), Taylor and Francis, Washington
  • Dafre, A.L., Medeiros, I.D., Muller, I.C., Ventura, E.C., Dias Bainy, A.C., Antioxidant enzymes and thiol/disulfide status in the digestive gland of the brown mussel Perna perna exposed to lead and paraquat (2004) Chem. Biol. Interact., 149, pp. 97-105
  • Dickinson, D.A., Forman, H.J., Cellular glutathione and thiols metabolism (2002) Biochem. Pharmacol., 64, pp. 1019-1026
  • Domingues, I., Guilhermino, L., Soares, A.M.V.M., Nogueira, A.J.A., Assessing dimethoate contamination in temperate and tropical climates: potential use of biomarkers in bioassays with two chironomid species (2007) Chemosphere, 69, pp. 145-154
  • Ellman, G.L., Courtney, K.D., Andres Jr., V., Featherstone, R.M., A new and rapid colorimetric determination of acetylcholinesterase activity (1961) Biochem. Pharmacol., 7, pp. 88-95
  • Ferrari, A., Venturino, A., Pechén de D'Angelo, A.M., Effects of carbaryl and azinphos-methyl on juvenile rainbow trout (Oncorhynchus mykiss) detoxifying enzymes (2007) Pestic. Biochem. Phys., 88, pp. 134-142
  • Fried, B., Sundar Rao, K., Sherma, J., Fatty acid composition of Biomphalaria glabrata (Gastropoda: Planorbidae) fed hen's egg yolk versus leaf lettuce (1992) Comp. Biochem. Physiol., 101 A, pp. 351-352
  • Galloway, T.S., Depledge, M.H., Immunotoxicity in invertebrates: measurement and ecotoxicological relevance (2001) Ecotoxicology, 10, pp. 1-23
  • Galloway, T., Handy, R., Immunotoxicity of organophosphorous pesticides (2003) Ecotoxicology, 12, pp. 345-363
  • Goldstone, A.B., Liochev, S.I., Fridovich, I., Inactivation of copper, zinc superoxide dismutase by H2O2: mechanism of protection (2006) Free Rad. Biol. Med., 41, pp. 1860-1863
  • Gormley, K.L., Teather, K.L., Guignion, D.L., Changes in salmonid communities associated with pesticide runoff events (2005) Ecotoxicology, 14, pp. 671-678
  • Granovsky, A.V., Ma, L., Ricaud, R., Bengtson, R.L., Selim, H.M., Fate of azinphos-methyl in a sugarcane field: distributions in canopy, soil, and runoff (1996) J. Environ. Qual., 25, pp. 1210-1216
  • Habig, W.H., Pabst, M.J., Kakoby, W.B., Glutathione S-transferases. The first enzymatic step in mercapturic acid formation (1974) J. Biol. Chem., 249, pp. 7130-7139
  • Hermes-Lima, M., Oxygen in biology and biochemistry: role of free radicals (2004) Functional Metabolism: Regulation and Adaptation, pp. 319-368. , Storey K.B. (Ed), Wiley-Liss, Hoboken
  • Kletzien, R.F., Harris, P.K.W., Foellmi, L.A., Glucose-6-phosphate dehydrogenase: a "housekeeping" enzyme subject to tissue-specific regulation by hormones, nutrients, and oxidant stress (1994) FASEB J., 8, pp. 174-181
  • Kono, Y., Fridovich, I., Superoxide radical inhibits catalase (1982) J. Biol. Chem., 257, pp. 5751-5754
  • Kristoff, G., Verrengia Guerrero, N., Pechén de D'Angelo, A.M., Cochón, A.C., Inhibition of cholinesterase activity by azinphos-methyl in two freshwater invertebrates: Biomphalaria glabrata and Lumbriculus variegatus (2006) Toxicology, 222, pp. 185-194
  • Livingstone, D.R., Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms (2001) Mar. Pollut. Bull., 42, pp. 656-666
  • Loewy, R.M., Carvajal, L.G., Novelli, M., Pechen de D'Angelo, A.M., Azinphos-methyl residues in shallow groundwater from the fruit production region of northern Patagonia, Argentina (2006) J. Environ. Sci. Health B., 41, pp. 869-881
  • Lowry, O.H., Rosebrough, A., Farr, L., Randall, R.S., Protein measurement with the folin phenol reagent (1951) J. Biol. Chem., 249, pp. 265-275
  • Masella, R., Di Benedetto, R., Varì, R., Filesi, C., Giovannini, C., Novel mechanisms of natural antioxidant compounds in biological systems: involvement of glutathione and glutathione-related enzymes (2005) J. Nut. Biochem., 16, pp. 2577-2586
  • Milatovic, D., Gupta, R.C., Aschner, M., Anticholinesterase toxicity and oxidative stress (2006) Scientific World J., 28, pp. 295-310
  • Misra, H.P., Fridovich, I., The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase (1972) J. Biol. Chem., 247, pp. 3170-3175
  • Münzinger, A., Biomphalaria glabrata (say), a suitable organism for a biotest (1987) Environ. Technol. Lett., 8, pp. 141-148
  • Orbea, A., Ortiz-Zarragoitia, M., Cajaraville, M.P., Interactive effects of benzo (a) pyrene and cadmium and effects of di (2-ethylhexyl) phthalate on antioxidant and peroxisomal enzymes and peroxisomal volume density in the digestive gland of mussel Mytilus galloprovincialis Lmk (2002) Biomarkers, 7, pp. 33-48
  • Oruc, E.O., Üner, N., Combined effects of 2,4-D and azinphos-methyl on antioxidant enzymes and lipid peroxidation in liver of Orechromis niloticus (2000) Comp. Biochem. Physiol. Part C, 127, pp. 291-296
  • Oruc, E.O., Üner, N., Marker enzyme assessment in the liver of Cyprinus carpio (L.) exposed to 2,4-D and azinphos-methyl (2002) J. Biochem. Mol. Toxicol., 16, pp. 182-188
  • Ozcan Oruc, E., Sevgiler, Y., Uner, N., Tissue-specific oxidative stress responses in fish exposed to 2,4-D and azinphos-methyl (2004) Comp. Biochem. Physiol. Part C, 137, pp. 43-51
  • Peña-Llopis, S., Ferrando, M.D., Peña, J.B., Impaired glutathione redox status is associated with decreased survival in two organophosphate-poisoned marine bivalves (2002) Chemosphere, 47, pp. 485-497
  • Peña-Llopis, S., Ferrando, M.D., Peña, J.B., Fish tolerance to organophosphate-induced oxidative stress is dependent on the glutathione metabolism and enhanced by N-acetylcysteine (2003) Aquat. Toxicol., 65, pp. 337-360
  • Rosety-Rodriguez, M., Javier-Ordonez, F., Rosety, I., Rosety, J.M., Rosety, M., Erythrocyte antioxidant enzymes of gilthead as early-warning bio-indicators of oxidative stress induced by malathion (2005) HAEMA, 8, pp. 237-240
  • Shadnia, S., Azizi, E., Hosseini, R., Khoei, S., Fouladdel, S., Pajoumand, A., Jalali, N., Abdollahi, M., Evaluation of oxidative stress and genotoxicity in organophosphorus insecticide formulators (2005) Hum. Exp. Toxicol., 24, pp. 439-445
  • Schulz, R., Using a freshwater amphipod in situ bioassay as a sensitive tool to detect pesticide effects in the field (2003) Environ. Toxicol. Chem., 22, pp. 1172-1176
  • Schulz, R., Field studies on exposure, effects, and risk mitigation of aquatic nonpoint-source insecticide pollution: a review (2004) J. Environ. Qual., 33, pp. 419-448
  • Sokal, R.R., Rohlf, F.J., (1997) The Principles and Practice of Statistic in Biological Research, , WH Freeman and Company, NY, USA
  • Tietze, F., Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues (1969) Anal. Biochem., 27, pp. 502-522
  • Ulusu, N.N., Tandogan, B., Purification and kinetics of sheep kidney cortex glucose-6-phosphate dehydrogenase (2006) Comp. Biochem. Physiol., Part B, 143, pp. 249-255
  • USEPA, United States Environmental Protection Agency, 2000. Methods for measuring the toxicity and bioaccumulation of sediment-associated contaminants with freshwater invertebrates. 600/R-94/024. USEPA, Washington, DC; USEPA, United States Environmental Protection Agency, 2001. Interim registration eligibility decision for azinphos-methyl. Case No. 0235. <http://www.epa.gov./REDs/azinphosmethyl_ired.pdf>; Verma, R.S., Mehta, A., Srivastava, N., In vivo chlorpyrifos induced oxidative stress: attenuation by antioxidant vitamins (2007) Pestic. Biochem. Phys., 88, pp. 191-196
  • Verrengia Guerrero, N.R., Mozzarelli, M.N., Giancarlo, H., Nahabedian, D., Wider, E.A., Biomphalaria glabrata: relevance of albino organisms as a useful tool for environmental lead monitoring (1997) Bull. Environ. Contam. Toxicol., 59, pp. 822-827
  • Wan, M.T., Szeto, S.Y., Price, P., Distribution and persistence of azinphos-methyl and parathion in chemigated cranberry bogs (1995) J. Environ. Qual., 24, pp. 589-596
  • Wiegand, C., Pehkonen, S., Akkanen, J., Penttinen, O.P., Kukkonen, J.V.K., Bioaccumulation of paraquat by Lumbriculus variegatus in the presence of dissolved natural organic matter and impact on energy costs, biotransformation and oxidative enzymes (2007) Chemosphere, 66, pp. 558-566

Citas:

---------- APA ----------
Kristoff, G., Verrengia Guerrero, N.R. & Cochón, A.C. (2008) . Effects of azinphos-methyl exposure on enzymatic and non-enzymatic antioxidant defenses in Biomphalaria glabrata and Lumbriculus variegatus. Chemosphere, 72(9), 1333-1339.
http://dx.doi.org/10.1016/j.chemosphere.2008.04.026
---------- CHICAGO ----------
Kristoff, G., Verrengia Guerrero, N.R., Cochón, A.C. "Effects of azinphos-methyl exposure on enzymatic and non-enzymatic antioxidant defenses in Biomphalaria glabrata and Lumbriculus variegatus" . Chemosphere 72, no. 9 (2008) : 1333-1339.
http://dx.doi.org/10.1016/j.chemosphere.2008.04.026
---------- MLA ----------
Kristoff, G., Verrengia Guerrero, N.R., Cochón, A.C. "Effects of azinphos-methyl exposure on enzymatic and non-enzymatic antioxidant defenses in Biomphalaria glabrata and Lumbriculus variegatus" . Chemosphere, vol. 72, no. 9, 2008, pp. 1333-1339.
http://dx.doi.org/10.1016/j.chemosphere.2008.04.026
---------- VANCOUVER ----------
Kristoff, G., Verrengia Guerrero, N.R., Cochón, A.C. Effects of azinphos-methyl exposure on enzymatic and non-enzymatic antioxidant defenses in Biomphalaria glabrata and Lumbriculus variegatus. Chemosphere. 2008;72(9):1333-1339.
http://dx.doi.org/10.1016/j.chemosphere.2008.04.026