Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Arsenic pollution of groundwater is a serious problem in many regions of Latin America that causes severe risks to human health. As a consequence, non-destructive monitoring methodologies, sensitive to arsenic presence in the environment and able to perform a rapid screening of large polluted areas, are highly sought-after. Both chlorophyll - a fluorescence and reflectance of aquatic plants may be potential indicators to sense toxicity in water media. In this work, the effects of arsenic on the optical and photophysical properties of leaves of different aquatic plants (Vallisneria gigantea, Azolla filiculoides and Lemna minor) were evaluated. Reflectance spectra were recorded for the plant leaves from 300 to 2400nm. The spectral distribution of the fluorescence was also studied and corrected for light re-absorption processes. Photosynthetic parameters (Fv/Fm and ΦPSII) were additionally calculated from the variable chlorophyll fluorescence recorded with a pulse amplitude modulated fluorometer. Fluorescence and reflectance properties for V. gigantea and A. filiculoides were sensitive to arsenic presence in contrast to the behaviour of L. minor. Observed changes in fluorescence spectra could be interpreted in terms of preferential damage in photosystem II. The quantum efficiency of photosystem II for the first two species was also affected, decreasing upon arsenic treatment. As a result of this research, V. gigantea and A. filiculoides were proposed as bioindicators of arsenic occurrence in aquatic media. © 2014 Elsevier Ltd.

Registro:

Documento: Artículo
Título:Effect of arsenic on reflectance spectra and chlorophyll fluorescence of aquatic plants
Autor:Iriel, A.; Dundas, G.; Fernández Cirelli, A.; Lagorio, M.G.
Filiación:Instituto de Investigaciones en Producción Animal, INPA(UBA-CONICET) / Centro de Estudios Transdisciplinarios del Agua (CETA), Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Av. Chorroarín 280, Buenos Aires, C1427CWO, Argentina
INQUIMAE / Dpto. de Química Inorgánica, Analítica y Química Física, Ciudad Universitaria, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, 1er piso, Buenos Aires, C1428EHA, Argentina
Palabras clave:Arsenic; Chlorophyll fluorescence; Environment; Plant monitoring; Reflectance; Arsenic; Chlorophyll; Fluorescence; Groundwater; Groundwater pollution; Health risks; Reflection; Chlorophyll fluorescence; Environment; Non-destructive monitoring; Photophysical properties; Photosynthetic parameters; Plant monitoring; Pulse amplitude modulated fluorometers; Reflectance properties; Plants (botany); anthocyanin; arsenic; carotenoid; catalase; chlorophyll; glutathione transferase; oxygen derivative; phytochelatin; reactive oxygen metabolite; superoxide dismutase; arsenic; chlorophyll; photosystem II; water pollutant; aquatic plant; arsenic; bioindicator; chlorophyll a; contaminated land; fluorescence; groundwater pollution; pollution monitoring; reflectance; spectral analysis; toxicity; amplitude modulation; aquatic species; Article; Azolla filiculoides; chlorophyll fluorescence; controlled study; Eichhornia crassipes; fluorometry; Lemna minor; light absorption; macrophyte; nonhuman; photochemistry; photosynthetic photon flux density; photosynthetically active radiation; physical chemistry; phytoremediation; plant leaf; reflectometry; Vallisneria gigantea; Araceae; chemistry; drug effects; environmental monitoring; fern; fluorescence; Hydrocharitaceae; metabolism; photosystem II; species difference; toxicity; water pollutant; Latin America; Azolla filiculoides; Lemna minor; Vallisneria gigantea; Araceae; Arsenic; Chlorophyll; Environmental Monitoring; Ferns; Fluorescence; Hydrocharitaceae; Photosystem II Protein Complex; Plant Leaves; Species Specificity; Water Pollutants, Chemical
Año:2015
Volumen:119
Página de inicio:697
Página de fin:703
DOI: http://dx.doi.org/10.1016/j.chemosphere.2014.07.066
Título revista:Chemosphere
Título revista abreviado:Chemosphere
ISSN:00456535
CODEN:CMSHA
CAS:arsenic, 7440-38-2; catalase, 9001-05-2; chlorophyll, 1406-65-1, 15611-43-5; glutathione transferase, 50812-37-8; phytochelatin, 98726-08-0; superoxide dismutase, 37294-21-6, 9016-01-7, 9054-89-1; Arsenic; Chlorophyll; Photosystem II Protein Complex; Water Pollutants, Chemical
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00456535_v119_n_p697_Iriel

Referencias:

  • Alvarado, S., Guédez, M., Lué-Merú, M.P., Graterol, N., Anzalone, A., Arroyo, C.J., Gyula, Z., Arsenic removal from waters by bioremediation with the aquatic plants Water Hyacinth (Eichhornia crassipes) and Lesser Duckweed (Lemna minor) (2008) Bioresour. Technol., 99, pp. 8436-8440
  • (1995) Standard Methods for the Examination of Water and Wastewater, , 19th ed. American Public Health Association, Washington
  • Asada, K., Production and scavenging of reactive oxygen species in chloroplasts and their functions (2006) Plant Physiol., 141, pp. 391-396
  • Bundschuh, J., Litter, M.I., Parvez, F., Román-Ross, G., Nicolli, H.B., Jean, J., Liu, C., Toujaguez, R., One century of arsenic exposure in Latin America: a review of history and occurrence from 14 countries (2012) Sci. Total Environ., 429, pp. 2-35
  • Cerovic, Z.G., Ounis, A., Cartelat, A., Latouche, G., Goulas, S., Meyer, Y., Moya, I., The use of chlorophyll fluorescence excitation spectra for the non-destructive in situ assessment of UV-absorbing compounds in leaves (2002) Plant Cell Environ., 25, pp. 1663-1676
  • Chen, S., Yin, C., Strasser, R.J., Govindjee, Y., Govindjee, Y.C., Qiang, S., Reactive oxygen species from chloroplasts contribute to 3-acetyl-5-isopropyltetramic acid-induced leaf necrosis of Arabidopsis thaliana (2012) Plant Physiol. Biochem., 52, pp. 38-51
  • Cordon, G., Lagorio, M.G., Re-absorption of chlorophyll fluorescence in leaves revisited. A comparison of correction models (2006) Photochem. Photobiol. Sci., 5, pp. 735-740
  • Dhankher, O.P., Li, Y., Rosen, B.P., Shi, J., Salt, D., Senecoff, J.F., Nupur, A., Meagher, R.B., Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and γ-glutamylcysteine synthetase expression (2002) Nat. Biotechnol., 20, pp. 1140-1145
  • Durrieu, C., Tran-Minha, C., Chovelona, J.M., Bartheta, L., Chouteaua, C., Védrinea, C., Algal biosensors for aquatic ecosystems monitoring (2006) Eur. Phys. J. Appl. Phys., 36, pp. 205-209
  • Emengini, E.J., Blackburn, G.A., Theobald, J.C., Early detection of oil-induced stress in crops using spectral and thermal responses (2013) J. Appl. Remote Sens., 7, pp. 1-14
  • Ferguson, J.F., Gavis, J., A review of the arsenic cycle in natural waters (1972) Water Res., 6, pp. 1259-1274
  • Hartley-Whitaker, J., Ainsworth, G., Meharg, A.A., Copper- and arsenate-induced oxidative stress in Holcus lanatus L. clones with different sensitivity (2001) Plant Cell Environ., 24, pp. 713-722
  • Hatfield, J., Gitelson, A., Schepers, J., Walthall, C., Application of spectral remote sensing for agronomic decisions (2008) Agron. J., 100, pp. S117-S131
  • Iriel, A., Lagorio, M.G., Biospectroscopy of Rhododendron indicum flowers. Non-destructive assessment of Anthocyanins in petals using a reflectance-based method (2009) Photochem. Photobiol. Sci., 8, pp. 337-344
  • Iriel, A., Lagorio, M.G., Implications of reflectance and fluorescence of Rhododendron indicum flowers in biosignaling (2010) Photochem. Photobiol. Sci., 7, pp. 342-348
  • Iriel, A., Mendes Novo, J., Cordon, G.B., Lagorio, M.G., Atrazine and methyl viologen effects on chlorophyll-a fluorescence revisited-implications in photosystems emission and ecotoxicity assessment (2014) Photochem. Photobiol., 90, pp. 107-112
  • Lagorio, M.G., Chlorophyll fluorescence emission spectra in photosynthetic organisms (2011) Chlorophyll: Structure, Production and Medicinal Uses, pp. 115-150. , Nova Science Publishers, New York, H. Le, E. Salcedo (Eds.)
  • Lichtenthaler, H.K., Buschmann, C., Knapp, M., How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio RFd of leaves with the PAM fluorometer (2005) Photosynthetica, 43, pp. 379-393
  • Litter, M.I., Alarcón-Herrera, M.T., Arenas, M.J., Armienta, M.A., Avilés, M., Cáceres, R.E., Cipriani, E.N., Pérez-Carrera, A., Small-scale and household methods to remove arsenic from water for drinking purposes in Latin America (2012) Sci. Total Environ., 429, pp. 107-122
  • Ma, L.Q., Komar, K.M., Tu, C., Zhang, W., Cai, Y., Kennelley, E.D., A fern that hyperaccumulates arsenic (2001) Nature, 409, p. 679
  • Mascher, R., Lippmann, B., Holzinger, S., Bergmann, H., Tamaki, S., Frankenberger, W.T., Arsenate toxicity: effects on oxidative stress response molecules and enzymes in red clover plants (2002) Plant Sci., 163, pp. 961-969
  • Maxwell, K., Johnson, G., Chlorophyll fluorescence-a practical guide (2000) J. Exp. Bot., 51, pp. 659-668
  • McClintock, T.R., Chen, Y., Bundschuh, J., Oliver, J.T., Navoni, J., Olmos, V., Villaamil Lepori, E., Parvez, F., Arsenic exposure in Latin America: biomarkers, risk assessments and related health effects (2012) Sci. Total Environ., 429, pp. 76-91
  • Meharg, A.A., Jardine, L., Arsenite transport into paddy rice (Oryza sativa) roots (2003) New Phytol., 157, pp. 39-44
  • Mendes Novo, J., Iriel, A., Lagorio, M.G., Modelling chlorophyll fluorescence of kiwi fruit (Actinidia deliciosa) (2012) Photochem. Photobiol. Sci., 11, pp. 724-730
  • Mikryakova, T.F., Accumulation of heavy metals by macrophytes at different levels of pollution of aquatic medium (2002) Water Resour., 29, pp. 230-232
  • Milivojević, D.B., Nikolić, B.R., Drinić, G., Effects of arsenic on phosphorus content in different organs and chlorophyll fluorescence in primary leaves of soybean (2006) Biol. Plant., 50, pp. 149-151
  • Miretzky, P., Saralegui, A., Fernández Cirelli, A., Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina) (2004) Chemosphere, 57, pp. 997-1005
  • Miretzky, P., Saralegui, A., Fernández Cirelli, A., Simultaneous heavy metal removal mechanism by dead macrophytes (2006) Chemosphere, 62, pp. 247-254
  • Mishra, V., Upadhyay, A., Pathak, V., Tripathi, B., Phytoremediation of mercury and arsenic from tropical opencast coalmine effluent through naturally occurring aquatic macrophytes (2008) Water, Air, Soil Pollut., 192, pp. 303-314
  • Misyura, M., Colasanti, J., Rothstein, S.J., Physiological and genetic analysis of Arabidopsis thaliana anthocyanin biosynthesis mutants under chronic adverse environmental conditions (2013) J. Exp. Bot., 64, pp. 229-240
  • Miteva, E., Merakchiyska, M., Response of chloroplasts and photosynthetic mechanism of bean plants to excess arsenic in soil (2002) Bulg. J. Agric. Sci., 8, pp. 151-156
  • Mylona, P.V., Polidoros, A.N., Scandalios, J.G., Modulation of antioxidant responses by arsenic in maize (1998) Free Radical Biol. Med., 25, pp. 576-585
  • Nicolli, H.B., Suriano, J.M., Gómez Peral, M.A., Ferpozzi, O.A., Baleani, O.A., Groundwater contamination with arsenic and other trace metals in an area of the Pampa, Province of Cordoba, Argentina (1989) Environ. Geol. Water Sci., 14, pp. 3-16
  • Pfündel, E., Estimating the contribution of photosystem I to total leaf chlorophyll fluorescence (1998) Photosynth. Res., 56, pp. 185-195
  • Pisani, T., Munzi, S., Paoli, L., Bačkor, M., Loppi, S., Physiological effects of arsenic in the lichen Xanthoria parietina (L.) Th. Fr. (2011) Chemosphere, 82, pp. 963-969
  • Procházková, D., Haisel, D., Wilhelmová, N., Content of carotenoids during ageing and senescence of tobacco leaves with genetically modulated life-span (2009) Photosynthetica, 47, pp. 409-414
  • Rahman, M.A., Hasegawa, H., Aquatic arsenic: phytoremediation using floating macrophytes (2011) Chemosphere, 83, pp. 633-646
  • Rahman, M.A., Hasegawa, H., Rahman, M.M., Islam, M.N., Miah, M.A.M., Tasmen, A., Effect of arsenic on photosynthesis, growth and yield of five widely cultivated rice (Oryza sativa L.) varieties in Bangladesh (2007) Chemosphere, 67, pp. 1072-1079
  • Rahman, M.A., Hasegawa, H., Ueda, K., Maki, T., Rahman, M.M., Influence of phosphate and iron ions in selective uptake of arsenic species by water fern (Salvinia natans L.) (2008) Chem. Eng. J., 145, pp. 179-184
  • Rahman Shaibur, M., Kawai, S., Effect of arsenic on visible symptom and arsenic concentration in hydroponic Japanese mustard spinach (2009) Environ. Exp. Bot., 67, pp. 65-70
  • Ramos, M.E., Lagorio, M.G., True fluorescence spectra of leaves (2004) Photochem. Photobiol. Sci., 3, pp. 1063-1066
  • Robinson, B., Marchetti, M., Moni, C., Schroeter, L., van den Dijssel, C., Milne, G., Bolan, N., Mahimairaja, S., Arsenic accumulation by aquatic and terrestrial plants (2005) Managing Arsenic in the Environment: From Soil to Human Health, pp. 235-247. , CSIRO, Collingwood, Victoria, R. Naidu, E. Smith, G. Owens, P. Bhattacharya, P. Nadebaum (Eds.)
  • Rosso, J.J., Puntoriero, M.L., Troncoso, J.J., Volpedo, A.V., Fernández Cirelli, A., Occurrence of fluoride in arsenic-rich surface waters: a case study in the Pampa Plain, Argentina (2011) Bull. Environ. Contam. Toxicol., 87, pp. 409-413
  • Sasmaz, A., Obek, E., The accumulation of arsenic, uranium, and boron in Lemna gibba L. exposed to secondary effluents (2009) Ecol. Eng., 35, pp. 1564-1567
  • Sassolas, A., Prieto-Simón, B., Marty, J.L., Biosensors for pesticide detection: new trends (2012) Am. J. Anal. Chem., pp. 210-232
  • Schreiber, U., Bilger, W., Neubauer, C., Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis (1995) Ecophysiology of Photosynthesis, pp. 49-70. , Springer, Berlin Heidelberg, Berlin, E. Schulze, M.M. Caldwell (Eds.)
  • Sinha, D., Dey, S., Bhattacharya, R.K., Roy, M., In vitro mitigation of arsenic toxicity by tea polyphenols in human lymphocytes (2007) J. Environ. Pathol. Toxicol. Oncol., 26, pp. 207-220
  • Slonecker, T., Haack, B., Price, S., Spectroscopic analysis of arsenic uptake in Pteris (2009) Remote Sens., 1, pp. 644-675
  • Slonecker, T., Haack, B., Price, S., Spectroscopic analysis of arsenic uptake in Pteris Ferns (2009) Remote Sens., 1, pp. 644-675
  • Smedley, P.L., Kinniburgh, D.G., A review of the source, behaviour and distribution, of arsenic in natural waters (2002) Appl. Geochem., 17, pp. 517-568
  • Smedley, P.L., Kinniburgh, D.G., Macdonald, D.M.J., Nicolli, H.B., Barros, A.J., Tullio, J.O., Pearce, J.M., Alonso, M.S., Arsenic associations in sediments from the loess aquifer of La Pampa, Argentina (2005) Appl. Geochem., 20, pp. 989-1016
  • Stoeva, N., Bineva, T., Oxidative changes and photosynthesis in oat plants grown in as-contaminated soil (2003) Bulg. J. Plant Physiol., 29, pp. 87-95
  • Stoeva, N., Berova, M., Zlatev, Z., Physiological response to maize to arsenic contamination (2003) Biol. Plant., 47, pp. 449-452
  • Stoeva, N., Berova, M., Zlatev, Z., Effect of arsenic on some physiological parameters in bean plants (2005) Biol. Plant., 49, pp. 293-296
  • Tamaki, S., Frankenberger, W.T., Environmental biochemistry of arsenic (1992) Rev. Environ. Contam. Toxicol., 124, pp. 79-110
  • Védrine, C., Leclerc, J.C., Durrieu, C., Tran-Minh, C., Optical whole-cell biosensor using Chlorella vulgaris designed for monitoring herbicides (2003) Biosens. Bioelectron., 18, pp. 457-463
  • Wang, W., Ma, L.Q., Rathinasabapathi, B., Cai, Y., Guo Lio, Y., Ming Zeng, G., Mechanisms of efficient arsenite uptake by arsenic hyperaccumulator Pteris vittata (2011) Environ. Sci. Technol., 45, pp. 9719-9725
  • Yaryura, P., Cordon, G., Leon, M., Kerber, N., Pucheu, N., Rubio, G., García, A., Lagorio, M.G., Effect of phosphorus deficiency on reflectance and chlorophyll fluorescence of cotyledons of oilseed rape (Brassica napus L.) (2009) J. Agron. Crop Sci., 195, pp. 186-196
  • Zhang, X., Lin, A.-J., Zhao, F.-J., Xu, G.-Z., Duan, G.-L., Zhu, Y.-G., Arsenic accumulation by the aquatic fern Azolla: comparison of arsenate uptake, speciation and efflux by Azolla caroliniana and Azolla filiculoides (2008) Environ. Pollut., 156, pp. 1149-1155
  • Zhao, F.J., Ma, J.F., Meharg, A.A., McGrath, S.P., Arsenic uptake and metabolism in plants (2009) New Phytol., 181, pp. 777-794

Citas:

---------- APA ----------
Iriel, A., Dundas, G., Fernández Cirelli, A. & Lagorio, M.G. (2015) . Effect of arsenic on reflectance spectra and chlorophyll fluorescence of aquatic plants. Chemosphere, 119, 697-703.
http://dx.doi.org/10.1016/j.chemosphere.2014.07.066
---------- CHICAGO ----------
Iriel, A., Dundas, G., Fernández Cirelli, A., Lagorio, M.G. "Effect of arsenic on reflectance spectra and chlorophyll fluorescence of aquatic plants" . Chemosphere 119 (2015) : 697-703.
http://dx.doi.org/10.1016/j.chemosphere.2014.07.066
---------- MLA ----------
Iriel, A., Dundas, G., Fernández Cirelli, A., Lagorio, M.G. "Effect of arsenic on reflectance spectra and chlorophyll fluorescence of aquatic plants" . Chemosphere, vol. 119, 2015, pp. 697-703.
http://dx.doi.org/10.1016/j.chemosphere.2014.07.066
---------- VANCOUVER ----------
Iriel, A., Dundas, G., Fernández Cirelli, A., Lagorio, M.G. Effect of arsenic on reflectance spectra and chlorophyll fluorescence of aquatic plants. Chemosphere. 2015;119:697-703.
http://dx.doi.org/10.1016/j.chemosphere.2014.07.066