Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Chemical changes in leaf input to forest soils have been reported to affect decay processes. In this work, litter mass loss and decomposition constants (k) during 200 days in solid-state fermentation of the native tree Celtis tala Gill. ex Planch. and the exotic one Ligustrum lucidum Ait. with three common litter saprotrophic basidiomycetes were compared. Alterations in litter quality were characterized by solid-state 13C NMR spectroscopy, pH, soluble sugars, ammonium, proteins, and phenol content determination and were associated with extracellular lignocellulolytic enzyme production. Differences in substrate decomposition related to litter type were observed for Leratiomyces ceres, achieving a higher k in the exotic L. lucidum litter, which might be attributed to the induction of manganese peroxidase activity. Substrate preference for alkyl C and more degradation of lignified compounds were found in such substrates. Although no statistical differences in mass loss were observed for the rest of the fungi assayed, we detected changes in several of the parameters evaluated. This suggests that exotic invasions may alter ecosystem functioning by accelerating decomposition processes through an increased fungal ligninolytic activity. © 2018, Canadian Science Publishing. All rights reserved.

Registro:

Documento: Artículo
Título:Exotic litter of the invasive plant Ligustrum lucidum alters enzymatic production and lignin degradation by selected saprotrophic fungi
Autor:Mallerman, J.; Itria, R.; Alarcón-Gutiérrez, E.; Hernández, C.; Levin, L.; Saparrat, M.
Filiación:Laboratorio de Micología Experimental, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INMIBO CONICET, Buenos Aires, 1428, Argentina
Instituto Nacional de Tecnología Industrial (INTI), Av. Gral. Paz 5445, CC 147, San Martín, Prov. Buenos Aires 1650, Argentina
Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Av. de las Culturas Veracruzanas No. 101, Col. Emiliano Zapata, Xalapa, Veracruz C.P. 910910, Mexico
Instituto de Fisiología Vegetal (INFIVE), UNLP, CCT-La Plata-CONICET, Diag. 113 y 61, CC 327, La Plata, 1900, Argentina
Instituto de Botánica Spegazzini, Facultad de Ciencias Naturales y Museo, UNLP, 53 # 477, La Plata, 1900, Argentina
Palabras clave:Basidiomycetes; Carbon-13 cross-polarization magicangle spinning nuclear magnetic resonance; Extracellular enzymes; Litter quality; Solid-state fermentation; Enzyme activity; Fermentation; Forestry; Fungi; Nuclear magnetic resonance spectroscopy; Soils; Substrates; Basidiomycetes; Cross polarization magic-angle spinnings; Extracellular enzymes; Litter quality; Solid-state fermentation; Biodegradation; deciduous tree; degradation; enzyme activity; fermentation; fungus; invasive species; lignin; litter; native species; nuclear magnetic resonance; saprotrophy; shrub; substrate preference; Biodegradation; Fermentation; Forestry; Fungi; Mass; Production; Solids; Substrates; Basidiomycota; Celtis tala; Ceres; Fungi; Leratiomyces; Ligustrum lucidum
Año:2018
Volumen:48
Número:6
Página de inicio:709
Página de fin:720
DOI: http://dx.doi.org/10.1139/cjfr-2017-0309
Título revista:Canadian Journal of Forest Research
Título revista abreviado:Can. J. For. Res.
ISSN:00455067
CODEN:CJFRA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00455067_v48_n6_p709_Mallerman

Referencias:

  • Alarcón-Gutiérrez, E., Floch, C., Augur, C., Petit, J.L., Ziarelli, F., Criquet, S., Spatial variations of chemical composition, microbial functional diversity, and enzyme activities in a Mediterranean litter (Quercus ilex L.) profile (2009) Pedobiologia, 52, pp. 387-399
  • Allison, S.D., Vitousek, P.M., Rapid nutrient cycling in leaf litter from invasive plants in Hawai’i (2004) Oecologia, 141, pp. 612-619. , PMID:15549401
  • Aragón, R., Groom, M., Invasion by Ligustrum lucidum (Oleaceae) in NW Argentina: Early stage characteristics in different habitat types (2003) Rev. Biol. Trop, 51, pp. 59-70. , PMID:15162681
  • Aragón, R., Montti, L., Ayup, M.M., Fernández, R., Exotic species as modifiers of ecosystem processes: Litter decomposition in native and invaded secondary forests ofNWArgentina (2014) Acta Oecol, 54, pp. 21-28
  • Baldock, J.A., Oades, J.M., Nelson, P.N., Skene, T.M., Golchin, A., Clarke, P., Assessing the extent of decomposition of natural organic materials using solid-state 13C NMR spectroscopy. Aust (1997) J. Soil Res, 35, pp. 1061-1083
  • Beecher, G.R., Whitten, B.K., Ammonia determination: Reagent modification and interfering compounds (1970) Anal. Biochem, 36, pp. 243-246. , PMID:5482636
  • Ben Younes, S., Mechichi, T., Sayadi, S., Purification and characterization of the laccase secreted by the white rot fungus Perenniporia tephropora and its role in the decolourization of synthetic dyes (2007) J. Appl. Microbiol, 102 (4), pp. 1033-1042. , PMID:17381747
  • Berg, B., Decomposition patterns for foliar litter — a theory for influencing factors. Soil Biol (2014) Biochem, 78, pp. 222-232
  • Berg, B., McClaugherty, C., (2014) Plant Litter: Decomposition, Humus Formation, Carbon Sequestration, , rd ed. Springer-Verlag, Berlin, Heidelberg
  • Berns, A.E., Philipp, H., Narres, H.D., Burauel, P., Vereecken, H., Tappe, W., Effect of gamma-sterilization and autoclaving on soil organic matter structure as studied by solid state NMR, UV and fluorescence spectroscopy (2008) Eur. J. Soil Sci, 59, pp. 540-550
  • Box, J.D., Investigation of the Folin-Ciocalteau phenol reagent for the determination of polyphenolic substances in natural waters (1983) Water Res, 17, pp. 511-525
  • Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal. Biochem, 72, pp. 248-254. , PMID:942051
  • Cadish, G., Giller, K.E., (1997) Driven by Nature: Plant Litter Quality and Decomposition, , CAB International, Wallingford
  • Coüteaux, M.M., Bottner, P., Berg, B., Litter decomposition, climate and litter quality (1995) Trends Ecol. Evol, 10, pp. 63-66. , PMID:21236954
  • Cronk, Q.C.B., Fuller, J.L., (1995) Plant Invaders: The Threat to Natural Ecosystems, , Chapman & Hall, London
  • De Marco, A., Spaccini, R., Vittozzi, P., Esposito, F., Berg, B., Virzo De Santo, A., Decomposition of black locust and black pine leaf litter in two coeval forest stands on Mount Vesuvius and dynamics of organic components assessed through proximate analysis and NMR spectroscopy (2012) Soil Biol. Biochem, 51, pp. 1-15
  • Dick, R.P., (2011) (Editor), , Soil Science Society of America, Madison, Wis
  • Dix, N.J., Webster, J., (1995) Fungal Ecology, , Chapman & Hall, London
  • Dray, S., Chessel, D., Thioulouse, J., Co-inertia analysis and the linking of ecological data tables (2003) Ecology, 84, pp. 3078-3089
  • Fernandez, R.D., Bulacio, N., Álvarez, A., Pajot, H., Aragón, R., Fungal decomposers of leaf litter from an invaded and native mountain forest of NW Argentina (2017) Antonie Van Leeuwenhoek, 110, pp. 1207-1218. , PMID:28553697
  • Gavier-Pizarro, G.I., Kuemmerle, T., Hoyos, L.E., Stewart, S.I., Huebner, C.D., Keuler, N.S., Radeloff, V.C., Monitoring the invasion of an exotic tree (Ligustrum lucidum) from 1983 to 2006 with Landsat TM/ETM+ satellite data and Support Vector Machines in Córdoba, Argentina (2012) Remote Sens. Environ, 122, pp. 134-145
  • Godoy, O., Castro-Díez, P., Van Logtestijn, R.S.P., Cornelissen, J.H.C., Valladares, F., Leaf litter traits of invasive species slow down decomposition compared to Spanish natives: A broad phylogenetic comparison (2010) Oeco-Logia, 162, pp. 781-790
  • Hättenschwiler, S., Tiunov, A.V., Scheu, S., Biodiversity and litter decomposition in terrestrial ecosystems (2005) Annu. Rev. Ecol. Evol. Syst, 36, pp. 191-218
  • Haw, J.F., Maciel, G.E., Schroeder, H.A., Carbon-13 nuclear magnetic resonance spectrometric study of wood and wood pulping with cross polarization and magic-angle spinning (1984) Anal. Chem, 56, pp. 1323-1329
  • Kalesnik, F., Sirolli, H., Collantes, M., Seed bank composition in a secondary forest in the Lower Delta of the Paraná River (Argentina) (2013) Acta Bot. Bras, 27, pp. 40-49
  • Kellner, H., Luis, P., Pecyna, M.J., Barbi, F., Kapturska, D., Krüger, D., Zak, D.R., Hofrichter, M., Widespread occurrence of expressed fungal secretory peroxidases in forest soils (2014) Plos One, 9 (4), p. e95557
  • Knicker, H., Schmidt, M.W.I., Kögel-Knabner, I., Nature of organic nitrogen in fine particle size separates of sandy soils of highly industrialized areas as revealed by NMR spectroscopy. Soil Biol (2000) Biochem, 32, pp. 241-252
  • Knight, K.S., Kurylo, J.S., Endress, A.G., Stewart, J.R., Reich, P.B., Ecology and ecosystem impacts of common buckthorn (Rhamnus cathartica): A review (2007) Biol. Invasions, 9, pp. 925-937
  • Kögel-Knabner, I., De Leeuw, J.W., Hatcher, P.G., Nature and distribution of alkyl carbon in forest soil profiles: Implications for the origin and humification of aliphatic biomacromolecules (1992) Sci. Total Environ, 117-118, pp. 175-185
  • Lambers, H., Chapin, F.S., III, Pons, T.L., (2008) Plant Physiological Ecology, , Springer-Verlag, New York
  • Liao, C., Peng, R., Luo, Y., Zhou, X., Wu, X., Fang, C., Chen, J., Li, B., Altered ecosystem carbon and nitrogen cycles by plant invasion: A metaanalysis (2008) New Phytol, 177, pp. 706-714. , PMID:18042198
  • Lichstein, J.W., Grau, H.R., Aragón, R., Recruitment limitation in secondary forests dominated by an exotic tree (2004) J. Veg. Sci, 15, pp. 721-728
  • Liers, C., Arnstadt, T., Ullrich, R., Hofrichter, M., Patterns of lignin degradation and oxidative enzyme secretion by different wood- and litter-colonizing basidiomycetes and ascomycetes grown on beech-wood (2011) FEMS Microbiol. Ecol, 78, pp. 91-102
  • López-Mondéjar, R., Zühlke, D., Becher, D., Riedel, K., Baldrian, P., Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems (2016) Sci. Rep, 6, pp. 252-279. , PMID:27125755
  • Lorenz, K., Preston, C.M., Kandeler, E., Soil organic matter in urban soils: Estimation of elemental carbon by thermal oxidation and characterization of organic matter by solid-state 13C nuclear magnetic resonance (NMR) spectroscopy (2006) Geoderma, 130, pp. 312-323
  • Mallerman, J., (2017) Degradation of Plant Debris and Nonylphenol Ethoxylate by Lignocellulolytic Litter Fungi, , Ph.D. thesis, University ofBuenos Aires, Buenos Aires
  • Marano, A.V., Saparrat, M.C.N., Steciow, M.M., Cabello, M.N., Gleason, F.H., Pires-Zottarelli, C.L.A., De Souza, J.I., Barrera, M.D., Comparative analysis of leaf-litter decomposition from the native Pouteria salicifolia and the exotic invasive Ligustrum lucidum in a lowland stream (Buenos Aires, Argentina) (2013) Fundam. Appl. Limnol, 183, pp. 297-307
  • Massiot, D., Fayon, F., Capron, M., King, I., Le Calvé, S., Alonso, B., Durand, J., Hoatson, G., Modelling one- and two-dimensional solid-state NMR spectra (2002) Magn. Reson. Chem, 40, pp. 70-76
  • Mayer, A.M., Staples, R.C., Laccase: New functions for an old enzyme (2002) Phytochemistry, 60, pp. 551-565. , PMID:12126701
  • Miller, G.L., Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal (1959) Chem, 31, pp. 426-428
  • Nakazawa, M., (2014) Fmsb: Functions for Medical Statistics Book with Some Demographic Data, , R Package Version 0.5.1. R Foundation for Statistical Computing, Vienna, Austria
  • Nannipieri, P., Giagnoni, L., Renella, G., Puglisi, E., Ceccanti, B., Masciandaro, G., Fornasier, F., Marinari, S., Soil enzymology: Classical and molecular approaches (2012) Biol. Fertil. Soils, 48, pp. 743-762
  • Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O’Hara, R.B., Simpson, G.L., Wagner, H., (2013) Vegan: Community Ecology Package. Version 2.0E7. R Foundation for Statistical Computing, , Vienna, Austria
  • Olson, J.S., Energy storage and the balance of producers and decomposers in ecological systems (1963) Ecology, 44, pp. 322-331
  • Osono, T., Hobara, S., Koba, K., Kameda, K., Reduction of fungal growth and lignin decomposition in needle litter by avian excreta (2006) Soil Biol. Biochem, 38, pp. 1623-1630
  • Paszczyñski, A.J., Crawford, R.L., Huynh, V.B., Manganese peroxidase of Phanerochaete chrysosporium: Purification (1988) Methods Enzymol, 161, pp. 264-270
  • Purahong, W., Kapturska, D., Pecyna, M.J., Schulz, E., Schloter, M., Buscot, F., Hofrichter, M., Krüger, D., Influence of different forest system management practices on leaf litter decomposition rates, nutrient dynamics and the activity of ligninolytic enzymes: A case study from central European forests (2014) Plos One, 9, p. e93700. , PMID: 24699676
  • Purahong, W., Wubet, T., Lentendu, G., Schloter, M., Pecyna, M.J., Kapturska, D., Hofrichter, M., Buscot, F., Life in leaf litter: Novel insights into community dynamics of bacteria and fungi during litter decomposition (2016) Mol. Ecol, 25, pp. 4059-4074
  • Pysek, P., Jarosík, V., Hulme, P.E., Pergl, J., Hejda, M., Schaffner, U., Vila, M., A global assessment of invasive plant impacts on resident species, communities and ecosystems: The interaction of impact measures, invading species’ traits and environment (2012) Global Change Biol, 18, pp. 1725-1737
  • Core Team, R., R: A language and environment for statistical computing [online] (2008) R Foundation for Statistical Computing, , http://www.R-project.org, Vienna, Austria
  • Regalado, V., Perestelo, F., Rodríguez, A., Carnicero, A., Sosa, F.J., De La Fuente, G., Falcón, M.A., Activated oxygen species and two extracellular enzymes: Laccase and aryl-alcohol oxidase, novel for the lignin-degrading fungus Fusarium proliferatum. Appl. Microbiol (1999) Biotechnol, 51, pp. 388-390
  • Saparrat, M.C.N., Rocca, M., Aulicino, M., Arambarri, A.M., Balatti, P.A., Celtis tala and Scutia buxifolia leaf litter decomposition by selected fungi in relation to their physical and chemical properties and lignocellulolytic enzyme activity (2008) Eur. J. Soil Biol, 44, pp. 400-407
  • Sinsabaugh, R.L., Lauber, C.L., Weintraub, M.N., Ahmed, B., Allison, S.D., Crenshaw, C., Contosta, A.R., Zeglin, L.H., Stoichiometry of soil enzyme activity at global scale (2008) Ecol. Lett., 11, pp. 1252-1264
  • Swift, M.J., Heal, O.W., Anderson, J.M., (1979) Decomposition in Terrestrial Ecosystems. Studies in Ecology, 5. , Blackwell Scientific Publications, Oxford
  • Ter Braak, C.J.F., Smilauer, P., (1998) CANOCO Reference Manual and user’s Guide to Canoco Forwindows: Software for Canonical Community Ordination, , Version 4. Microcomputer Power, Ithaca, N.Y., and Centre for Biometry, Wageningen, Netherlands
  • Veres, Z., Kotroczo, Z., Fekete, I., Toth, J.A., Lajtha, K., Townsend, K., Tothmeresz, B., Soil extracellular enzyme activities are sensitive indicators of detrital inputs and carbon availability (2015) Appl. Soil Ecol, 92, pp. 18-23
  • Vetrovsky, T., Steffen, K.T., Baldrian, P., Potential of cometabolic transformation of polysaccharides and lignin in lignocellulose by soil Actinobac-teria (2014) Plos One, 9, p. e89108. , PMID:24551229
  • Vonskova, J., Dobiasova, P., Snajdr, J., Vanek, D., Cajthaml, T., Santruckova, H., Baldrian, P., Chemical composition of litter affects the growth and enzyme production by the saprotrophic basidiomycete Hypholomafasciculare (2011) Fungal Ecol, 4, pp. 417-426
  • Wardle, D.A., Bardgett, R.D., Klironomos, J.N., Setälä, H., Van Der Putten, W.H., Wall, D.H., Ecological linkages between aboveground and below-ground biota (2004) Science, 304, pp. 1629-1633. , PMID: 15192218
  • White, T.J., Bruns, S., Lee, S., Taylor, J., Amplification and direct sequencing of fungal ribosomal RNAgenes for phylogenetics (1990) PCR Protocols: A Guide to Methods and Applications, pp. 315-322. , Edited by MA Innis, D.H. Gelfand, J.J. Sninsky, and T.J. White. Academic Press, New York
  • Wood, T.M., Bhat, K.M., Methods for measuring cellulase activities (1988) Methods Enzymol, 160, pp. 87-112
  • Xiao, Z., Zhang, X., Gregg, D.J., Saddler, J.N., Effects of sugar inhibition on cellulases and beta-glucosidase during enzymatic hydrolysis of softwood substrates (2004) Appl. Biochem. Biotechnol, 115, pp. 1115-1126

Citas:

---------- APA ----------
Mallerman, J., Itria, R., Alarcón-Gutiérrez, E., Hernández, C., Levin, L. & Saparrat, M. (2018) . Exotic litter of the invasive plant Ligustrum lucidum alters enzymatic production and lignin degradation by selected saprotrophic fungi. Canadian Journal of Forest Research, 48(6), 709-720.
http://dx.doi.org/10.1139/cjfr-2017-0309
---------- CHICAGO ----------
Mallerman, J., Itria, R., Alarcón-Gutiérrez, E., Hernández, C., Levin, L., Saparrat, M. "Exotic litter of the invasive plant Ligustrum lucidum alters enzymatic production and lignin degradation by selected saprotrophic fungi" . Canadian Journal of Forest Research 48, no. 6 (2018) : 709-720.
http://dx.doi.org/10.1139/cjfr-2017-0309
---------- MLA ----------
Mallerman, J., Itria, R., Alarcón-Gutiérrez, E., Hernández, C., Levin, L., Saparrat, M. "Exotic litter of the invasive plant Ligustrum lucidum alters enzymatic production and lignin degradation by selected saprotrophic fungi" . Canadian Journal of Forest Research, vol. 48, no. 6, 2018, pp. 709-720.
http://dx.doi.org/10.1139/cjfr-2017-0309
---------- VANCOUVER ----------
Mallerman, J., Itria, R., Alarcón-Gutiérrez, E., Hernández, C., Levin, L., Saparrat, M. Exotic litter of the invasive plant Ligustrum lucidum alters enzymatic production and lignin degradation by selected saprotrophic fungi. Can. J. For. Res. 2018;48(6):709-720.
http://dx.doi.org/10.1139/cjfr-2017-0309