Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

A set of triterpenoids with different grades of oxidation in the lupane skeleton were prepared and evaluated as cholinesterase inhibitors. Allylic oxidation with selenium oxide and Jones's oxidation were employed to obtain mono-, di- and tri-oxolupanes, starting from calenduladiol (1) and lupeol (3). All the derivatives showed a selective inhibition of butyrylcholinesterase over acetylcholinesterase (BChE vs. AChE). A kinetic study proved that compounds 2 and 9, the more potent inhibitors of the series, act as competitive inhibitors. Molecular modeling was used to understand their interaction with BChE, the role of carbonyl at C-16 and the selectivity towards this enzyme over AChE. These results indicate that oxidation at C-16 of the lupane skeleton is a key transformation in order to improve the cholinesterase inhibition of these compounds. © 2018 Elsevier Inc.

Registro:

Documento: Artículo
Título:Oxidation at C-16 enhances butyrylcholinesterase inhibition in lupane triterpenoids
Autor:Castro, M.J.; Richmond, V.; Faraoni, M.B.; Murray, A.P.
Filiación:INQUISUR-CONICET, Departamento de Química, Universidad Nacional del Sur, Av. Alem 1253, Bahía Blanca, B8000CPB, Argentina
UMYMFOR (CONICET-UBA), Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires, 1428, Argentina
Palabras clave:Cholinesterase inhibitors; Lupane derivatives; Molecular modeling; Triterpenoids; 16beta hydroxy 3 oxo lup 1,20(29) dien 30 al; 16beta hydroxy 3 oxo lup 20(29) en 30 al; 16beta hydroxy lup 20(29) en 3 one; 3 oxo lup 20(29) en 30 al; 3,16 dioxo lup 20(29) en 30 al; 3,16 dioxo lup 20(29) ene; 3beta hydroxy 16 oxo lup 20(29) en 30 al; 3beta hydroxy lup 20(29) en 16 one; 3beta hydroxy lup 20(29) en 30 al; 3beta,16beta dihydroxy lup 20(29) en 30 al; calenduladiol; cholinesterase inhibitor; lup 20(29) en 3 one; lupeol; natural product; selenium oxide; triterpene; unclassified drug; acetylcholinesterase; cholinesterase; cholinesterase inhibitor; lupane; triterpene; Acacia; Acacia cedilloi; Article; carbon nuclear magnetic resonance; cholinesterase inhibition; column chromatography; competitive inhibition; drug synthesis; enzyme activity; enzyme inhibitor complex; hydrogen bond; IC50; mass spectrometry; molecular docking; molecular dynamics; molecular model; nonhuman; oxidation; priority journal; proton nuclear magnetic resonance; animal; chemical structure; chemistry; dose response; human; metabolism; oxidation reduction reaction; structure activity relation; synthesis; Torpedo; Acetylcholinesterase; Animals; Butyrylcholinesterase; Cholinesterase Inhibitors; Dose-Response Relationship, Drug; Humans; Molecular Docking Simulation; Molecular Structure; Oxidation-Reduction; Structure-Activity Relationship; Torpedo; Triterpenes
Año:2018
Volumen:79
Página de inicio:301
Página de fin:309
DOI: http://dx.doi.org/10.1016/j.bioorg.2018.05.012
Título revista:Bioorganic Chemistry
Título revista abreviado:Bioorg. Chem.
ISSN:00452068
CODEN:BOCMB
CAS:lupeol, 545-47-1; selenium oxide, 12640-89-0, 7446-08-4; acetylcholinesterase, 9000-81-1; cholinesterase, 9001-08-5; Acetylcholinesterase; Butyrylcholinesterase; Cholinesterase Inhibitors; lupane; Triterpenes
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00452068_v79_n_p301_Castro

Referencias:

  • Bachurin, S.O., Bovina, E.V., Ustyugov, A.A., Drugs in clinical trials for Alzheimer's disease: the major trends (2017) Med. Res. Rev., 37, pp. 1186-1225
  • Cummings, J., Lee, G., Mortsdorf, T., Ritter, A., Zhong, K., Alzheimer's disease drug development pipeline: 2017 (2017) Alzheimers Dement., 3, pp. 367-384
  • Lanctôt, K.L., Amatniek, J., Ancoli-Israel, S., Arnold, S.E., Ballard, C., Cohen-Mansfield, J., Ismail, Z., Boot, B., Neuropsychiatric signs and symptoms of Alzheimer's disease: new treatment paradigms (2017) Alzheimers Dement., 3, pp. 440-449
  • Huff, F.J., Reiter, C.T., Rand, J.B.J., The ratio of acetylcholinesterase to butyrylcholinesterase influences the specificity of assays for each enzyme in human brain (1989) J. Neural Transm., 75, pp. 129-134
  • Dvir, H., Silman, I., Harel, M., Rosenberry, T.L., Sussman, J.L., Acetylcholinesterase: from 3D structure to function (2010) Chem. Biol. Interact., 187, pp. 10-22
  • Nordberg, A., Ballard, C., Bullok, R., Darreh-Shori, T., Somogvi, M., A review of butyrylcholinesterase as a therapeutic target in the treatment of Alzheimer's disease, Prim. Care Companion J. Clin. Phys. 15 (2013) PCC.12r01412; Castro, M.J., Richmond, V., Romero, C., Maier, M.S., Estévez-Braun, A., Ravelo, A.G., Faraoni, M.B., Murray, A.P., Preparation, anticholinesterase activity and molecular docking of new lupane derivatives (2014) Bioorg. Med. Chem., 22, pp. 3341-3350
  • Vela Gurovic, M.S., Castro, M.J., Richmond, V., Faraoni, M.B., Maier, M.S., Murray, A.P., Triterpenoids with acetylcholinesterase inhibition from Chuquiraga erinacea D. Don. subsp. erinacea (Asteraceae) (2010) Planta Med., 76, pp. 607-610
  • Gutiérrez-Nicolás, F., Gordillo-Román, B., Oberti, J.C., Estévez-Braun, A., Ravelo, A.G., Joseph-Nathan, P., Synthesis and anti-HIV activity of lupane and olean-18-ene derivatives. Absolute configuration of 19,20-epoxylupanes by VCD (2012) J. Nat. Prod., 75, pp. 669-676
  • Khan, M.F., Maurya, C.K., Dev, K., Arha, D., Rai, K., Tamrakar, A.K., Maurya, R., Design and synthesis of lupeol analogues and their in vitro PTP-1B inhibitory activity (2014) Bioorg. Med. Chem. Lett., 24, pp. 2674-2679
  • Mutai, C., Abatis, D., Vagias, C., Moreauc, D., Roussakisc, C., Roussis, V., Lupane triterpenoids from Acacia mellifera with cytotoxic activity (2004) Phytochemistry, 65, pp. 1159-1164
  • Prachayasittikul, S., Saraban, P., Cherdtrakulkiat, R., Ruchirawat, S., Prachayasittikul, V., New bioactive triterpenoids and antimalarial activity of Diospyros rubra lec (2010) Excli J., 9, pp. 1-10
  • Bhandari, P., Patel, N.K., Bhutani, K.K., Synthesis of new heterocyclic lupeol derivatives as nitric oxide and pro-inflammatory cytokine inhibitors (2014) Bioorg. Med. Chem. Lett., 24, pp. 3596-3599
  • Yasukawa, K., Yu, S.Y., Yamanouchi, S., Takido, M., Akihisa, T., Tamura, T., Some lupane-type triterpenes inhibit tumor promotion by 12-0-tetradecanoylphorbol-13-acetate in two-stage carcinogenesis in mouse skin (1995) Phytomedicine, 1, pp. 309-313
  • Khan, M.F., Mishra, D.P., Ramakrishna, E., Rawat, A.K., Mishra, A., Srivastava, A.K., Maurya, R., Design and synthesis of lupeol analogues and their glucose uptake stimulatory effect in L6 skeletal muscle cells (2014) Med. Chem. Res., 23, pp. 4156-4166
  • Burns, D., Reynolds, W.F., Buchanan, G., Reese, P.B., Enriquez, R.G., Assignment of 1 H and 13 C spectra and investigation of hindered side-chain rotation in lupeol derivatives (2000) Magn. Reson. Chem., 38, pp. 488-493
  • Pech, G.G., Brito, W.F., Mena, G.J., Quijano, L., Constituents of Acacia cedilloi and Acacia gaumeri. Revised structure and complete NMR assignments of resinone (2002) Z. Naturforsch C., 57, pp. 773-776
  • Wei, Y., Ma, C., Chen, D., Hattori, M., Anti-HIV-1 protease triterpenoids from Stauntonia obovatifoliola Hayata subsp. intermedia (2008) Phytochemistry, 69, pp. 1875-1879
  • Ellman, G.L., Courtney, K.D., Andres, V., Featherstone, R.M., A new and rapid colorimetric determination of acetylcholinesterase activity (1961) Biochem. Pharmacol., 7, pp. 88-95
  • Saxena, A., Redman, A.M., Jiang, X., Lockridge, O., Doctor, B.P., Differences in active-site gorge dimensions of cholinesterases revealed by binding of inhibitors to human butyrylcholinesterase (1999) Chem. Biol. Interact., 119-120, pp. 61-69
  • Forli, S., Olson, A.J., Force field with discrete displaceable waters and desolvation entropy for hydrated ligand docking (2012) J. Med. Chem., 55, pp. 623-638
  • Nicolet, Y., Lockridge, O., Masson, P., Fontecilla-Camps, J.C., Nachon, F., Crystal characterization of human butyrylcholinesterase and of its complexes with substrate and products (2003) J. Biol. Chem., 278, pp. 41141-41147
  • Raves, M.L., Harel, M., Pang, Y.P., Silman, I., Kozikowski, A.P., Sussman, J.L., Structure of acetylcholinesterase complexed with the nootropic alkaloid, (-)-huperzine A (1997) Nat. Struct. Biol., 4, pp. 57-63
  • Dewar, M.J.S., Zoebisch, E.G., Healy, E.F., Stewart, J.J.P., Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model (1985) J. Am. Chem. Soc., 107, pp. 3902-3909
  • Roothaan, C.C.J., New developments in molecular orbital theory (1951) Rev. Mod. Phys., 23, pp. 69-89
  • (2004), Gaussian 03, Revision C.01, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian Inc., Wallingford, CT; (2013), Auto-Dock 4.2, The Scripps Research Institute, Department of Molecular Biology, MB-5, La Jolla, CA

Citas:

---------- APA ----------
Castro, M.J., Richmond, V., Faraoni, M.B. & Murray, A.P. (2018) . Oxidation at C-16 enhances butyrylcholinesterase inhibition in lupane triterpenoids. Bioorganic Chemistry, 79, 301-309.
http://dx.doi.org/10.1016/j.bioorg.2018.05.012
---------- CHICAGO ----------
Castro, M.J., Richmond, V., Faraoni, M.B., Murray, A.P. "Oxidation at C-16 enhances butyrylcholinesterase inhibition in lupane triterpenoids" . Bioorganic Chemistry 79 (2018) : 301-309.
http://dx.doi.org/10.1016/j.bioorg.2018.05.012
---------- MLA ----------
Castro, M.J., Richmond, V., Faraoni, M.B., Murray, A.P. "Oxidation at C-16 enhances butyrylcholinesterase inhibition in lupane triterpenoids" . Bioorganic Chemistry, vol. 79, 2018, pp. 301-309.
http://dx.doi.org/10.1016/j.bioorg.2018.05.012
---------- VANCOUVER ----------
Castro, M.J., Richmond, V., Faraoni, M.B., Murray, A.P. Oxidation at C-16 enhances butyrylcholinesterase inhibition in lupane triterpenoids. Bioorg. Chem. 2018;79:301-309.
http://dx.doi.org/10.1016/j.bioorg.2018.05.012