Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We present an efficient approach to the synthesis of a series of glycyrrhetinic acid derivatives. Six derivatives, five of them new compounds, were obtained through chemoenzymatic reactions in very good to excellent yield. In order to find the optimal reaction conditions, the influence of various parameters such as enzyme source, nucleophile:substrate ratio, enzyme:substrate ratio, solvent and temperature was studied. The excellent results obtained by lipase catalysis made the procedure very efficient considering their advantages such as mild reaction conditions and low environmental impact. Moreover, in order to explain the reactivity of glycyrrhetinic acid and the acetylated derivative to different nucleophiles in the enzymatic reactions, molecular docking studies were carried out. In addition, one of the synthesized compounds exhibited remarkable antiviral activity against TK + and TK- strains of Herpes simplex virus type 1 (HSV-1), sensitive and resistant to acyclovir (ACV) treatment. © 2018 Elsevier Inc.

Registro:

Documento: Artículo
Título:Chemoenzymatic synthesis of new derivatives of glycyrrhetinic acid with antiviral activity. Molecular docking study
Autor:Zígolo, M.A.; Salinas, M.; Alché, L.; Baldessari, A.; Liñares, G.G.
Filiación:Laboratorio de Biocatálisis, Departamento de Química Orgánica y UMYMFOR, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, piso 3, Buenos Aires, C1428EGA, Argentina
Laboratorio de Virología, Departamento de Química Biológica e IQUIBICEN, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, piso 4, Buenos Aires, C1428EGA, Argentina
Palabras clave:Antivirals; Glycyrrhetinic acid; Lipase-catalyzed; Molecular modeling; 3 acetylglycyrrhetinic acid; glycyrrhetinic acid derivative; n (3 acetylglycyrrhetinoyl) 1 amino 2 propanol; n (3 acetylglycyrrhetinoyl) 2 amino 1 propanol; n (3 acetylglycyrrhetinoyl) 4 hydroxy 1 butanol; n (3 acetylglycyrrhetinoyl)butanolamine; n (3 acetylglycyrrhetinoyl)ethanolamine; solvent; triacylglycerol lipase; unclassified drug; aciclovir; antivirus agent; glycyrrhetinic acid; Lipozyme; triacylglycerol lipase; acetylation; animal cell; antiviral activity; Article; catalysis; controlled study; drug synthesis; enzyme substrate; enzyme synthesis; Human alphaherpesvirus 1; molecular docking; molecular model; nonhuman; priority journal; Rhizomucor miehei; temperature sensitivity; biocatalysis; Candida; Carica; chemical structure; chemistry; dose response; drug effect; enzymology; Eurotiales; metabolism; microbial sensitivity test; Rhizomucor; Rhizopus; structure activity relation; Acyclovir; Antiviral Agents; Biocatalysis; Candida; Carica; Dose-Response Relationship, Drug; Eurotiales; Glycyrrhetinic Acid; Herpesvirus 1, Human; Lipase; Microbial Sensitivity Tests; Molecular Docking Simulation; Molecular Structure; Rhizomucor; Rhizopus; Structure-Activity Relationship
Año:2018
Volumen:78
Página de inicio:210
Página de fin:219
DOI: http://dx.doi.org/10.1016/j.bioorg.2018.03.018
Título revista:Bioorganic Chemistry
Título revista abreviado:Bioorg. Chem.
ISSN:00452068
CODEN:BOCMB
CAS:triacylglycerol lipase, 9001-62-1; aciclovir, 59277-89-3; glycyrrhetinic acid, 471-53-4; Acyclovir; Antiviral Agents; Glycyrrhetinic Acid; Lipase; Lipozyme
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00452068_v78_n_p210_Zigolo

Referencias:

  • Biondi, D.M., Rocco, C., Ruberto, G., Dihydrostilbene derivatives from Glycyrrhiza glabra leaves (2005) J. Nat. Prod., 68 (7), pp. 1099-1102
  • El-Refai, A.-M.H., Sallam, L.A., El-Menoufy, H.A., Amin, H.A.S., Physiological and chemical studies on the bioconversion of glycyrrhizin by Aspergillus niger NRRL 595 (2012) Mal. J. Microbiol., 8, pp. 75-82
  • Nomura, T., Fukai, T., Akiyama, T., Chemistry of phenolic compounds of licorice (Glycyrrhiza species) and their estrogenic and cytotoxic activities (2002) Pure Appl. Chem., 74 (7), pp. 1199-1206
  • Kao, T.-C., Shyu, M.-H., Yen, G.-C., Glycyrrhizic acid and 18β-glycyrrhetinic acid inhibit inflammation via PI3K/Akt/GSK3β signaling and glucocorticoid receptor activation (2010) J. Agric. Food Chem., 58 (15), pp. 8623-8629
  • Maitraie, D., Hung, C.-F., Tu, H.-Y., Liou, Y.-T., Wei, B.-L., Yang, S.-C., Wang, J.-P., Lin, C.-N., Synthesis, anti-inflammatory, and antioxidant activities of 18β-glycyrrhetinic acid derivatives as chemical mediators and xanthine oxidase inhibitors (2009) Bioorg. Med. Chem., 17 (7), pp. 2785-2792
  • Ikeda, T., Yokomizo, K., Okawa, M., Tsuchihashi, R., Kinjo, J., Nohara, T., Uyeda, M., Anti-herpes virus type 1 activity of oleanane-type triterpenoids (2005) Biol. Pharm. Bull., 28 (9), pp. 1779-1781
  • Serra, C., Lampis, G., Pompei, R., Pinza, M., Antiviral activity of new triterpenic derivatives (1994) Pharmacol. Res., 29 (4), pp. 359-366
  • Schwarz, S., Lucas, S.D., Sommerwerk, S., Csuk, R., Amino derivatives of glycyrrhetinic acid as potential inhibitors of cholinesterases (2014) Bioorg. Med. Chem., 22 (13), pp. 3370-3378
  • Gaware, R., Khunt, R., Czollner, L., Stanetty, C., Da Cunha, T., Kratschmar, D.V., Odermatt, A., Claßen-Houben, D., Synthesis of new glycyrrhetinic acid derived ring A azepanone, 29-urea and 29-hydroxamic acid derivatives as selective 11β-hydroxysteroid dehydrogenase 2 inhibitors (2011) Bioorg. Med. Chem., 19 (6), pp. 1866-1880
  • Stanetty, C., Czollner, L., Koller, I., Shah, P., Gaware, R., Da Cunha, T., Odermatt, A., Claßen-Houben, D., Synthesis of novel 3-amino and 29-hydroxamic acid derivatives of glycyrrhetinic acid as selective 11β-hydroxysteroid dehydrogenase 2 inhibitors (2010) Bioorg. Med. Chem., 18 (21), pp. 7522-7541
  • Kratschmar, D.V., Vuorinen, A., Da Cunha, T., Wolber, G., Classen-Houben, D., Doblhoff, O., Schuster, D., Odermatt, A., Characterization of activity and binding mode of glycyrrhetinic acid derivatives inhibiting 11β-hydroxysteroid dehydrogenase type 2 (2011) J. Steroid Biochem. Mol. Biol., 125 (1), pp. 129-142
  • Faber, K., Biotransformations in organic chemistry: a textbook (2011), sixth ed. Springer Science & Business Media; Whitthall, J., Sutton, P., Practical Methods for Biocatalysis and Biotransformations 2 (2012), John Wiley & Sons Ltd. New York; Buchholz, K., Kasche, V., Bornscheuer, U.T., Biocatalysts and Enzyme Technology (2012), John Wiley & Sons; Carrea, G., Riva, S., Organic Synthesis with Enzymes in Non-aqueous Media (2008), John Wiley & Sons; Baldessari, A., Lipases as catalysts in synthesis of fine chemicals (2012) Lipases Phosphol.: Meth. Protocols, pp. 445-456
  • Gotor-Fernández, V., Busto, E., Gotor, V., Candida antarctica lipase B: an ideal biocatalyst for the preparation of nitrogenated organic compounds (2006) Adv. Synt. Catal., 348 (7-8), pp. 797-812
  • Cuetos, A., García-Ramos, M., Fischereder, E.-M., Díaz-Rodríguez, A., Grogan, G., Gotor, V., Kroutil, W., Lavandera, I., Catalytic promiscuity of transaminases: preparation of enantioenriched β-fluoroamines by formal tandem hydrodefluorination/deamination (2016) Angew. Chem. Int. Ed., 55 (9), pp. 3144-3147
  • González-Martínez, D., Gotor, V., Gotor-Fernández, V., Application of deep eutectic solvents in promiscuous lipase-catalysed aldol reactions (2016) Eur. J. Org. Chem., 2016 (8), pp. 1513-1519
  • García Liñares, G., Arroyo Mañez, P., Baldessari, A., Lipase-catalyzed synthesis of substituted phenylacetamides: hammett analysis and computational study of the enzymatic aminolysis (2014) Eur. J. Org. Chem., 2014 (29), pp. 6439-6450
  • Zígolo, M.A., García Liñares, G., Baldessari, A., New cholic acid derivatives: biocatalytic synthesis and molecular docking study (2016) Steroids, 107, pp. 10-19
  • García Liñares, G., Antonela Zígolo, M., Simonetti, L., Longhi, S.A., Baldessari, A., Enzymatic synthesis of bile acid derivatives and biological evaluation against Trypanosoma cruzi (2015) Bioorg. Med. Chem., 23 (15), pp. 4804-4814
  • García Liñares, G., Parraud, G., Labriola, C., Baldessari, A., Chemoenzymatic synthesis and biological evaluation of 2- and 3-hydroxypyridine derivatives against Leishmania mexicana (2012) Bioorg. Med. Chem., 20 (15), pp. 4614-4624
  • Quintana, P.G., García Liñares, G., Chanquia, S.N., Gorojod, R.M., Kotler, M.L., Baldessari, A., Improved enzymatic procedure for the synthesis of anandamide and N-fatty acylalkanolamine analogues: a combination strategy to antitumor activity (2016) Eur. J. Org. Chem., 2016 (3), pp. 518-528
  • Chanquia, S.N., Boscaro, N., Alche, L., Baldessari, A., Liñares, G.G., An efficient lipase-catalyzed synthesis of fatty acid derivatives of vanillylamine with antiherpetic activity in acyclovir-resistant strains (2017) Chem. Select, 2 (4), pp. 1537-1543
  • Kukhanova, M., Korovina, A., Kochetkov, S., Human herpes simplex virus: life cycle and development of inhibitors (2014) Biochemistry (Moscow), 79 (13), pp. 1635-1652
  • Kimberlin, D.W., Coen, D.M., Biron, K.K., Cohen, J.I., Lamb, R.A., McKinlay, M., Emini, E.A., Whitley, R.J., Molecular mechanisms of antiviral resistance (1995) Antiviral Res., 26 (4), pp. 369-401
  • Beseda, I., Czollner, L., Shah, P.S., Khunt, R., Gaware, R., Kosma, P., Stanetty, C., Mereiter, K., Synthesis of glycyrrhetinic acid derivatives for the treatment of metabolic diseases (2010) Bioorg. Med. Chem., 18 (1), pp. 433-454
  • Baldessari, A., Mangone, C.P., One-pot biocatalyzed preparation of substituted amides as intermediates of pharmaceuticals (2001) J. Mol. Cat. B: Enzymatic, 11 (4), pp. 335-341
  • Rustoy, E.M., Baldessari, A., An efficient chemoenzymatic synthesis of the bactericide lapyrium chloride (2005) Eur. J. Org. Chem., 2005 (21), pp. 4628-4632
  • Rustoy, E.M., Baldessari, A., Chemoselective enzymatic preparation of N-hydroxyalkylacrylamides, monomers for hydrophilic polymer matrices (2006) J. Mol. Cat. B: Enzymatic, 39 (1), pp. 50-54
  • Wang, L., Yang, R., Yuan, B., Liu, Y., Liu, C., The antiviral and antimicrobial activities of licorice, a widely-used Chinese herb (2015) Acta Pharm. Sinica B, 5 (4), pp. 310-315
  • Milijkovic, D., Sharaf, N., El-Din and K. Gasi, Resolution the racemic 1-amino-2-propanol (1985) J. Serb. Chem. Soc, 50 (60), p. 277
  • Synoradzki, L., Bernaś, U., Ruśkowski, P., Tartaric acid and its O-acyl derivatives. Part 2. Application of tartaric acid and O-acyl tartaric acids and anhydrides. Resolution of racemates (2008) Org. Prep. Proc. Int., 40 (2), pp. 163-200
  • Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K., Olson, A.J., Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function (1998) J. Comp. Chem., 19 (14), pp. 1639-1662

Citas:

---------- APA ----------
Zígolo, M.A., Salinas, M., Alché, L., Baldessari, A. & Liñares, G.G. (2018) . Chemoenzymatic synthesis of new derivatives of glycyrrhetinic acid with antiviral activity. Molecular docking study. Bioorganic Chemistry, 78, 210-219.
http://dx.doi.org/10.1016/j.bioorg.2018.03.018
---------- CHICAGO ----------
Zígolo, M.A., Salinas, M., Alché, L., Baldessari, A., Liñares, G.G. "Chemoenzymatic synthesis of new derivatives of glycyrrhetinic acid with antiviral activity. Molecular docking study" . Bioorganic Chemistry 78 (2018) : 210-219.
http://dx.doi.org/10.1016/j.bioorg.2018.03.018
---------- MLA ----------
Zígolo, M.A., Salinas, M., Alché, L., Baldessari, A., Liñares, G.G. "Chemoenzymatic synthesis of new derivatives of glycyrrhetinic acid with antiviral activity. Molecular docking study" . Bioorganic Chemistry, vol. 78, 2018, pp. 210-219.
http://dx.doi.org/10.1016/j.bioorg.2018.03.018
---------- VANCOUVER ----------
Zígolo, M.A., Salinas, M., Alché, L., Baldessari, A., Liñares, G.G. Chemoenzymatic synthesis of new derivatives of glycyrrhetinic acid with antiviral activity. Molecular docking study. Bioorg. Chem. 2018;78:210-219.
http://dx.doi.org/10.1016/j.bioorg.2018.03.018