Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The rutile phase of TiO2 has raised a wide interest for biomaterial applications. Since rutile is generally synthesized at high temperatures, a deposition process based on a cathodic arc discharge has been investigated in order to obtain rutile coatings at lower temperature on stainless steel substrates. In this work, TiO2 films were deposited on AISI 316 L stainless steel substrates heated at 300 and 400 °C with a negative bias of 120 V, employing Ti interlayers of different thicknesses. TiO2 films of approximately 500 and 900 nm were grown on Ti interlayers with thicknesses in the range 0–550 nm. The effect of Ti interlayers on the crystalline structure of TiO2 coatings was systematically studied with X-ray diffraction and Raman spectroscopy. The introduction of the Ti layer increased the rutile/anatase proportion either at 300 or 400 °C, turning rutile into the main phase in the TiO2 film. The largest amount of rutile for both temperatures was attained with a 55 nm Ti interlayer, the thinnest thickness studied. © 2017

Registro:

Documento: Artículo
Título:Enhancement of rutile phase formation in TiO2 films deposited on stainless steel substrates with a vacuum arc
Autor:Franco Arias, L.M.; Kleiman, A.; Vega, D.; Fazio, M.; Halac, E.; Márquez, A.
Filiación:Instituto de Física del Plasma, CONICET, Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Cdad. Universitaria Pab. 1Buenos Aires 1428, Argentina
Departamento Física de la Materia Condensada, Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. Gral Paz, San Martín, Buenos Aires 1499, Argentina
Escuela de Ciencia y Tecnología, Universidad Nacional de San MartínProvincia de Buenos Aires, Argentina
Palabras clave:Austenitic stainless steel; Cathodic arc; Rutile; Titanium dioxide; Coatings; Composite films; Oxide minerals; Titanium dioxide; Vacuum applications; X ray diffraction; Biomaterial application; Cathodic arc; Cathodic arc discharges; Crystalline structure; Deposition process; Lower temperatures; Rutile; Stainless steel substrates; Austenitic stainless steel
Año:2017
Volumen:638
Página de inicio:269
Página de fin:276
DOI: http://dx.doi.org/10.1016/j.tsf.2017.07.047
Título revista:Thin Solid Films
Título revista abreviado:Thin Solid Films
ISSN:00406090
CODEN:THSFA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00406090_v638_n_p269_FrancoArias

Referencias:

  • Diebold, U., The surface science of titanium dioxide (2003) Surf. Sci. Rep., 48, pp. 53-229
  • Sirghi, L., Hatanaka, Y., Hydrophilicity of amorphous TiO2 ultra-thin films (2003) Surf. Sci., 530, pp. 323-327
  • Hossain, M.F., Biswas, S., Takahashi, T., Kubota, Y., Fujishima, A., Influence of direct current power on the photocatalytic activity of facing target sputtered TiO2 thin films (2008) Thin Solid Films, 517, pp. 1091-1095
  • Huang, N., Chen, Y., Luo, J., Yi, J., Lu, R., Xiao, J., Xue, Z., Liu, X., In vitro investigation of blood compatibility of Ti with oxide layer of rutile structure (1994) J. Biomater. Appl., 8, pp. 404-412
  • Huang, N., Yang, P., Leng, Y.X., Chen, J.Y., Sun, H., Wang, J., Wang, G.J., Leng, Y., Hemocompatibility of titanium oxide films (2003) Biomaterials, 24, pp. 2177-2187
  • Larsson, C., Thomsen, P., Lausmaa, J., Rodahl, M., Kasemo, B., Ericson, L., Bone response to surface modified titanium implants: studies on electropolished implants with different oxide thicknesses and morphology (1994) Biomaterials, 15, pp. 1062-1074
  • Vallés, G., González-Melendi, P., González-Carrasco, J.L., Saldaña, L., Sánchez-Sabaté, E., Munuera, L., Vilaboa, N., Differential inflammatory macrophage response to rutile and titanium particles (2006) Biomaterials, 27, pp. 5199-5211
  • Forberg, S., Containers for spent nuclear fuel on the corrosion resistance of rutile (1986) Adv. Ceram., 20, pp. 321-327
  • Kleiman, A., Márquez, A., Vera, M.L., Meichtry, J.M., Litter, M.I., Photocatalytic activity of TiO2 thin films deposited by cathodic arc (2011) Appl. Catal. B, 101, pp. 676-681
  • Boxman, R.L., Sanders, D.M., Martin, P.J., (1995) Handbook of Vacuum Arc Science and Technology, Fundamentals and Applications, , Noyes Publ Park Ridge, New Jersey
  • Leng, Y.X., Chen, J.Y., Sun, H., Yang, P., Wan, G.J., Wang, J., Huang, N., Properties of titanium oxide synthesized by pulsed metal vacuum arc deposition (2004) Surf. Coat. Technol., 176, pp. 141-147
  • Martin, P.J., Bendavid, A., Kinder, T.J., Wielunski, L., The deposition of TiN thin films by nitrogen ion assisted deposition of Ti from a filtered cathodic arc source (1996) Surf. Coat. Technol., 86-87, pp. 271-278
  • Kleiman, A., Márquez, A., Kelly, H., Ion emission in a dc titanium cathodic arc operated with oxygen (2008) Phys. Scr. T., 131. , (4 pp)
  • Löbl, P., Huppertz, M., Mergel, D., Nucleation and growth in TiO2 films prepared by sputtering and evaporation (1994) Thin Solid Films, 251, pp. 72-79
  • Takikawa, H., Matsui, T., Sakakibara, T., Bendavid, A., Martin, P.J., Properties of titanium oxide film prepared by reactive cathodic vacuum arc deposition (1999) Thin Solid Films, 348, pp. 145-151
  • Kleiman, A., Márquez, A., Lamas, D.G., Anatase TiO2 films obtained by cathodic arc deposition (2007) Surf. Coat. Technol., 201, pp. 6358-6362
  • Bendavid, A., Martin, P.J., Jamting, Å., Takikawa, H., Structural and optical properties of titanium oxide thin films deposited by filtered arc deposition (1999) Thin Solid Films, 355-356, pp. 6-11
  • Zhang, F., Wang, X., Li, C., Wang, H., Chen, L., Liu, X., Rutile-type titanium oxide films synthesized by filtered arc deposition (1998) Surf. Coat. Technol., 110, pp. 136-139
  • Sönmezoğlu, S., Çankaya, G., Serin, N., Phase transformation of nanostructured titanium dioxide thin films grown by sol-gel method (2012) Appl. Phys. A Mater. Sci. Process., 107, pp. 233-241
  • Giolli, C., Characterization of TiO2 coatings prepared by a modified electric arc-physical vapour deposition system (2007) Surf. Coat. Technol., 202, pp. 13-22
  • Franco, L.M., Fazio, M.A., Halac, E., Vega, D., Heredia, E., Kleiman, A., Márquez, A., Phase transformation of TiO2 thin films in function bias voltage (2015) Proc. Mater. Sci., 8, pp. 39-45
  • Krishna, D.S.R., Sun, Y., Chen, Z., Magnetron sputtered TiO2 films on a stainless steel substrate: selective rutile phase formation and its tribological and anti-corrosion performance (2011) Thin Solid Films, 511, pp. 4860-4864
  • Márquez, A., Blanco, G., Fernandez de Rapp, M.E., Lamas, D.G., Tarulla, R., Properties of cupric oxide coatings prepared by cathodic arc deposition (2004) Surf. Coat. Technol., 187, pp. 154-160
  • Welzel, U., Ligot, J., Lamparter, P., Vermuelen, A.C., Mittemeijer, E.J., Stress analysis of polycrystalline thin films and surface regions by X-ray diffraction (2005) J. Appl. Crystallogr., 38, pp. 1-29
  • Chang, R.C., Chen, F.Y., Chuang, C.T., Tung, Y.C., Residual stresses of sputtering titanium thin films at various substrate temperatures (2010) J. Nanosci. Nanotechnol., 10, pp. 4562-4567
  • MatWeb, LLC, Matweb - Material Property Data (2017), http://www.matweb.com; Hanaor, D.A.H., Sorrell, C.C., Review of the anatase to rutile phase transformation (2011) J. Mater. Sci., 46, pp. 855-874
  • Gu, G.-R., Li, Y.-A., Tao, Y.-C., He, Z., Li, J.-J., Yin, H., Li, W.-Q., Zhao, Y.-N., Investigation on the structure of TiO2 films sputtered on alloy substrates (2003) Vacuum, 71, pp. 487-490
  • Porto, S.P.S., Fleury, P.A., Damen, T.C., Raman spectra of TiO2, MgF2, ZnF2, FeF2, and MnF2 (1967) Phys. Rev., 154, pp. 522-526
  • Choudhury, B., Choudhury, A., Local structure modification and phase transformation of TiO2 nanoparticles initiated by oxygen defects, grain size, and annealing temperature (2013) Int. Nano Lett., 3, p. 55
  • Li, W., Ni, C., Lin, H., Huang, C.P., Ismat Shah, S., Size dependence of thermal stability of TiO2 nanoparticles (2004) J. Appl. Phys., 96, pp. 6663-6668
  • Knorr, D.B., Merchant, S.M., Biberger, M.A., Development of texture in interconnect thin film stacks (1998) J. Vac. Sci. Technol. B, 16, pp. 2734-2744
  • Vaquila, I., Vergara, L.I., Passeggi, M.C.G., Jr., Vidal, R.A., Ferrón, J., Chemical reactions at surfaces: titanium oxidation (1999) Surf. Coat. Technol., 122, pp. 67-71
  • Lütjering, G., Williams, J.C., Titanium (2003), Springer-Verlag Berlin; Wiedemann, K.E., Shenoy, R.N., Unnam, J., Microhardness and lattice parameter calibrations of the oxygen solid solutions of unalloyed α-titanium and Ti-6Ali-2Sn-4Zr-2Mo (1987) Metall. Trans. A., 18A, pp. 1503-1510

Citas:

---------- APA ----------
Franco Arias, L.M., Kleiman, A., Vega, D., Fazio, M., Halac, E. & Márquez, A. (2017) . Enhancement of rutile phase formation in TiO2 films deposited on stainless steel substrates with a vacuum arc. Thin Solid Films, 638, 269-276.
http://dx.doi.org/10.1016/j.tsf.2017.07.047
---------- CHICAGO ----------
Franco Arias, L.M., Kleiman, A., Vega, D., Fazio, M., Halac, E., Márquez, A. "Enhancement of rutile phase formation in TiO2 films deposited on stainless steel substrates with a vacuum arc" . Thin Solid Films 638 (2017) : 269-276.
http://dx.doi.org/10.1016/j.tsf.2017.07.047
---------- MLA ----------
Franco Arias, L.M., Kleiman, A., Vega, D., Fazio, M., Halac, E., Márquez, A. "Enhancement of rutile phase formation in TiO2 films deposited on stainless steel substrates with a vacuum arc" . Thin Solid Films, vol. 638, 2017, pp. 269-276.
http://dx.doi.org/10.1016/j.tsf.2017.07.047
---------- VANCOUVER ----------
Franco Arias, L.M., Kleiman, A., Vega, D., Fazio, M., Halac, E., Márquez, A. Enhancement of rutile phase formation in TiO2 films deposited on stainless steel substrates with a vacuum arc. Thin Solid Films. 2017;638:269-276.
http://dx.doi.org/10.1016/j.tsf.2017.07.047