Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The glass transition temperature of whey proteins concentrate (WPC)/hydroxypropyl methylcellulose (HPMC) co-dried mixtures with different degrees of phase separation and morphologies were determined by differential scanning calorimetry. To this end the phase separation of aqueous mixtures of WPC (12 wt% or 20 wt%) and HPMC (2 wt% or 3 wt%) at pH 5 or 6, was arrested at different times before freeze-drying. Confocal microscopy allowed to characterize the morphology of phase separation. Co-dried mixture from quenched phase-separated systems exhibited different numbers of Tgs, according to the degree of phase separation. Two Tgs were observed in the fully phase-separated systems. A single Tg was detected during the first stages of phase separation (i.e. below a 50% of phase separation). It is proposed to ascribe the observed single Tg to the predominance of the extremely large mixed protein/polysaccharide interface present, that would dominate the mobility of the whole system because acting as a network for the entanglement between the protein-rich and the polysaccharide-rich phases. WPC (12 wt%)/HPMC (2 wt%) co-dried mixture at pH 5, with a degree of phase separation above 50%, exhibited three Tgs which were related respectively to the mixed interface, protein-rich phase and polysaccharide-rich phase. The non-phase-separated WPC (6 wt%)/HPMC (1 wt%) co-dried mixture also showed a single Tg with a reasonable agreement to the predicted value by a theoretical model. © 2009 Elsevier B.V. All rights reserved.

Registro:

Documento: Artículo
Título:Glass transition temperature of protein/polysaccharide co-dried mixtures as affected by the extent and morphology of phase separation
Autor:Jara, F.L.; Pilosof, A.M.R.
Filiación:Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina
Palabras clave:Confocal scanning light microscopy; Differential scanning calorimetry; Glass transition temperature; Hydroxypropyl methylcellulose; Phase behaviour; Whey protein concentrate; Calorimeters; Confocal microscopy; Curing; Differential scanning calorimetry; Glass; Glass transition; Laser interferometry; Mixtures; Phase interfaces; Phase modulation; Polysaccharides; Scanning; Superconducting transition temperature; Confocal scanning light microscopy; Glass transition temperature; Hydroxypropyl methylcellulose; Phase behaviour; Whey protein concentrate; Phase separation
Año:2009
Volumen:487
Número:1-2
Página de inicio:65
Página de fin:73
DOI: http://dx.doi.org/10.1016/j.tca.2009.01.012
Título revista:Thermochimica Acta
Título revista abreviado:Thermochim Acta
ISSN:00406031
CODEN:THACA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00406031_v487_n1-2_p65_Jara

Referencias:

  • Roos, Y.H., Karel, M., (1991) Food Technol., 45. , 66, 68-71, 107
  • Icoz, D.Z., Moraru, C.I., Kokini, J.L., (2005) Carbohydr. Polym., 62, pp. 120-129
  • Tromp, R.H., van de Velde, F., van Riel, J., Paques, M., (2001) Food Res. Int., 34, pp. 931-938
  • Slade, L., Levine, H., (1993) Carbohydr. Polym., 21, pp. 105-131
  • Roos, Y.H., (1995) Phase Transition in Foods, , Academic Press, San Diego
  • Bosma, M., Brinke, G.T., Ellis, T.S., (1988) Macromolecules, 21, pp. 1465-1470
  • Ferry, J.D., (1980) Viscoelastic Properties of Polymers, , J. Wiley & Sons, New York
  • Kalichevsky, M.T., Blandshard, J.M.V., (1992) Carbohydr. Polym., 19, pp. 271-278
  • Mousia, Z., Farhat, I.A., Blanchot, J.F., Mitchell, J.R., (2000) Polymer, 41, pp. 1841-1848
  • Li, T.Y., Chien, J.T., (2001) J. Food Sci., 66, pp. 698-704
  • Zimeri, J.E., Kokini, J.L., (2003) Carbohydr. Polym., 51, pp. 183-190
  • Hale, A., Blair, H.E., (1997) Polymer Blends and Block Copolymers, pp. 745-786. , Turi E.A. (Ed), Academic Press, San Diego
  • Tolstoguzov, V.B., (2000) J. Therm. Anal. Calorim., 61, pp. 397-409
  • Sperling, L.H., (2001) Introduction to Physical Polymer Science. 3rd ed., , John Wiley and Sons Inc., New York
  • Hartikainen, J., Lehtonen, O., Harmia, T., Lindner, M., Valkama, S., Ruokolainen, J., Friedrich, K., (2004) Chem. Mater., 16, pp. 3032-3039
  • Pérez, O.E., Wargon, V., Pilosof, A.M.R., (2006) Food Hydrocolloids, 20, pp. 966-974
  • Cayot, P., Lorient, D., (1997) Food Proteins and their Applications, pp. 225-256. , Damodaran S., and Paraf A. (Eds), Marcel Dekker, New York
  • Official methods of analysis (13th ed.), Association of Official Analytical Chemist (AOAC), Washington, DC, 1980; Mulvihill, D., Donovan, M., (1987) Ir. J. Food Sci. Technol., 11, pp. 43-75
  • Xiaoming, L., Powers, J., Swanson, B., Hill, H., Clark, S., (2005) Innovat. Food Sci. Emerg. Technol., 6, pp. 310-317
  • Benevides, C., Pessela, C., Torres, R., Batalla, P., Fuentes, M., Mateo, C., Fernández-Lafuente, R., Guisán, J., (2006) Biotechnol. Prog., 22, pp. 590-594
  • McPhillips, H., Craig, D., Royall, P., Hill, V., (1999) Int. J. Pharm., 180, pp. 83-90
  • Burin, L., Jouppila, K., Roos, Y., Kansikas, J., Buera, M.P., (2000) J. Agric. Food Chem., 48, pp. 5263-5268
  • Jouppila, K., Roos, Y., (1994) J. Dairy Sci., 77, pp. 2907-2915
  • Karmas, R., Buera, M.P., Karel, M., (1992) J. Agric. Food Chem., 40, pp. 873-879
  • Couchman, P., Karasz, F., (1978) Macromolecules, 11, pp. 117-119
  • Song, M., Hammiche, A., Pollock, H.M., Hourston, D.J., Reading, M., (1996) Polymer, 37, pp. 5661-5665
  • Shultz, A.R., Young, A.L., (1980) Macromolecules, 13, pp. 663-668
  • Woo, E.M., Fan, H.J., (1999) Polymer, 40, pp. 3803-3808
  • Keary, C.M., (2001) Carbohydr. Polym., 45, pp. 293-303
  • Loret, C., Schumm, S., Pudney, P.D.A., Frith, W.J., Fryer, P.J., (2005) Food Hydrocolloids, 19, pp. 557-565
  • Maugey, J., Van Nuland, T., Navard, P., (2001) Polymer, 42, pp. 4353-4366
  • Turgeon, S.L., Beaulieu, M., Schmitt, C., Sanchez, C., (2003) Curr. Opin. Colloid Interface Sci., 8, pp. 401-414
  • Pérez, O.E., Carrera-Sánchez, C., Rodríguez-Patino, J.M., Pilosof, A.M.R., (2007) Food Hydrocolloids, 21, pp. 794-803

Citas:

---------- APA ----------
Jara, F.L. & Pilosof, A.M.R. (2009) . Glass transition temperature of protein/polysaccharide co-dried mixtures as affected by the extent and morphology of phase separation. Thermochimica Acta, 487(1-2), 65-73.
http://dx.doi.org/10.1016/j.tca.2009.01.012
---------- CHICAGO ----------
Jara, F.L., Pilosof, A.M.R. "Glass transition temperature of protein/polysaccharide co-dried mixtures as affected by the extent and morphology of phase separation" . Thermochimica Acta 487, no. 1-2 (2009) : 65-73.
http://dx.doi.org/10.1016/j.tca.2009.01.012
---------- MLA ----------
Jara, F.L., Pilosof, A.M.R. "Glass transition temperature of protein/polysaccharide co-dried mixtures as affected by the extent and morphology of phase separation" . Thermochimica Acta, vol. 487, no. 1-2, 2009, pp. 65-73.
http://dx.doi.org/10.1016/j.tca.2009.01.012
---------- VANCOUVER ----------
Jara, F.L., Pilosof, A.M.R. Glass transition temperature of protein/polysaccharide co-dried mixtures as affected by the extent and morphology of phase separation. Thermochim Acta. 2009;487(1-2):65-73.
http://dx.doi.org/10.1016/j.tca.2009.01.012