Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

A series of 3-D asthenospheric-scale analogue models have been conducted in the laboratory in order to simulate the arrival of a spreading ridge at the trench and understand its effect on plate kinematics, slab geometry, and on the deformation of the overriding plate. These models are made of a two-layered linearly viscous system simulating the lithosphere and asthenosphere. We reproduce the progressive decrease in thickness of the oceanic lithosphere at the trench. We measure plate kinematics, slab geometry and upper plate deformation. Our experiments reveal that the subduction of a thinning plate beneath a freely moving overriding continent favors a decrease of the subduction velocity and an increase of the oceanic slab dip. When the upper plate motion is imposed by lateral boundary conditions, the evolution of the subducting plate geometry largely differs depending on the velocity of the overriding plate: the larger its trenchward velocity, the smaller the superficial dip of the oceanic slab. A slab flattening episode may occur resulting from the combined effect of the subduction of an increasingly thinner plate and the trenchward motion of a fast overriding plate. Slab flattening would be marked by an increase of the distance between the trench and the volcanic arc in nature. This phenomenon may explain the reported Neogene eastward motion of the volcanic arc in the Southern Patagonia that occurred prior to the subduction of the Chile Ridge. © 2018 Elsevier B.V.

Registro:

Documento: Artículo
Título:Trench-parallel spreading ridge subduction and its consequences for the geological evolution of the overriding plate: Insights from analogue models and comparison with the Neogene subduction beneath Patagonia
Autor:Salze, M.; Martinod, J.; Guillaume, B.; Kermarrec, J.-J.; Ghiglione, M.C.; Sue, C.
Filiación:Chrono-environnement, CNRS-UMR6249, Université de Bourgogne–Franche-Comté, 16 route de Gray, Besançon cedex, 25030, France
ISTerre, Université de Savoie Mont-Blanc, Le Bourget du Lac cedex, 73376, France
Univ Rennes, CNRS, Géosciences Rennes - UMR 6118, Rennes, F-35000, France
Instituto de Estudios Andinos IDEAN (Universidad de Buenos Aires - CONICET), Buenos Aires, Argentina
Palabras clave:Analogue modeling; Lithosphere; Oceanic ridge; Patagonia; Slab pull force; Southernmost Andes; Subduction; Deformation; Geometry; Kinematics; Volcanoes; Analogue modeling; Lithosphere; Oceanic ridge; Patagonia; Slab pull; Southernmost Andes; Subduction; Tectonics
Año:2018
Volumen:737
Página de inicio:27
Página de fin:39
DOI: http://dx.doi.org/10.1016/j.tecto.2018.04.018
Título revista:Tectonophysics
Título revista abreviado:Tectonophysics
ISSN:00401951
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00401951_v737_n_p27_Salze

Referencias:

  • Arrial, P.A., Billen, M.I., Influence of geometry and eclogitization on oceanic plateau subduction (2013) Earth Planet. Sci. Lett., 363, pp. 34-43
  • Bellahsen, N., Faccenna, C., Funiciello, F., Dynamics of subduction and plate motion in laboratory experiments: insights into the “plate tectonics” behavior of the Earth (2005) J. Geophys. Res. Solid Earth, 110 (B1)
  • Breitsprecher, K., Thorkelson, D.J., Neogene kinematic history of Nazca–Antarctic–Phoenix slab windows beneath Patagonia and the Antarctic Peninsula (2009) Tectonophysics, 464 (1), pp. 10-20
  • Cande, S.C., Leslie, R.B., Late Cenozoic tectonics of the southern Chile trench (1986) J. Geophys. Res. Solid Earth, 91 (B1), pp. 471-496
  • Chen, Z., Schellart, W.P., Duarte, J.C., Quantifying the energy dissipation of overriding plate deformation in three-dimensional subduction models (2015) J. Geophys. Res. Solid Earth, 120, pp. 519-536
  • Chung, W.Y., Kanamori, H., Subduction process of a fracture zone and aseismic ridges— the focal mechanism and source characteristics of the New Hebrides earthquake of 1969 January 19 and some related events (1978) Geophys. J. Int., 54 (1), pp. 221-240
  • Cloos, M., Lithospheric buoyancy and collisional orogenesis: subduction of oceanic plateaus, continental margins, island arcs, spreading ridges, and seamounts (1993) Geol. Soc. Am. Bull., 105 (6), pp. 715-737
  • Conrad, C.P., Hager, B.H., Effects of plate bending and fault strength at subduction zones on plate dynamics (1999) J. Geophys. Res. Solid Earth, 104 (B8), pp. 17551-17571
  • Conrad, C.P., Lithgow-Bertelloni, C., Faster seafloor spreading and lithosphere production during the mid-Cenozoic (2007) Geology, 35 (1), pp. 29-32
  • Coutand, I., Diraison, M., Cobbold, P.R., Gapais, D., Rossello, E.A., Miller, M., Structure and kinematics of a foothills transect, Lago Viedma, southern Andes (49°30′S) (1999) J. S. Am. Earth Sci., 12, pp. 1-15
  • Duarte, J.C., Schellart, W.P., Cruden, A.R., Three-dimensional dynamic laboratory models of subduction with an overriding plate and variable interplate rheology (2013) Geophys. J. Int., 195 (1), pp. 47-66
  • Duarte, J.C., Schellart, W.P., Cruden, A.R., Rheology of petrolatum–paraffin oil mixtures: applications to analogue modelling of geological processes (2014) J. Struct. Geol., 63, pp. 1-11
  • Duarte, J.C., Schellart, W.P., Cruden, A.R., How weak is the subduction zone interface? (2015) Geophys. Res. Lett., 42 (8), pp. 2664-2673
  • England, P.C., Katz, R.F., Melting above the anhydrous solidus controls the location of volcanic arcs (2010) Nature, 467 (7316), pp. 700-703
  • Espinoza, F., Morata, D., Polve, M., Lagabrielle, Y., Maury, R.C., Rupelle, A.D.L., Suarez, M., Middle Miocene calc-alkaline volcanism in Central Patagonia (47 S): petrogenesis and implications for slab dynamics (2010) Andean Geol., 37 (2)
  • Espurt, N., Funiciello, F., Martinod, J., Guillaume, B., Regard, V., Faccenna, C., Brusset, S., Flat subduction dynamics and deformation of the South American plate: insights from analog modeling (2008) Tectonics, 27 (3)
  • Fosdick, J.C., Romans, B.W., Fildani, A., Bernhardt, A., Calderón, M., Graham, S.A., Kinematic evolution of the Patagonian retroarc fold-and-thrust belt and Magallanes foreland basin, Chile and Argentina, 51 30′ S (2011) Geol. Soc. Am. Bull., 123 (9-10), pp. 1679-1698
  • Funiciello, F., Faccenna, C., Giardini, D., Regenauer-Lieb, K., Dynamics of retreating slabs: 2. Insights from three-dimensional laboratory experiments (2003) J. Geophys. Res. Solid Earth, 108 (B4)
  • Funiciello, F., Faccenna, C., Giardini, D., Role of lateral mantle flow in the evolution of subduction systems: insights from laboratory experiments (2004) Geophys. J. Int., 157 (3), pp. 1393-1406
  • Funiciello, F., Moroni, M., Piromallo, C., Faccenna, C., Cenedese, A., Bui, H.A., Mapping mantle flow during retreating subduction: laboratory models analysed by feature tracking (2006) J. Geophys. Res. Solid Earth, 111 (B03402)
  • Geist, E.L., Fisher, M.A., Scholl, D.W., Large-scale deformation associated with ridge subduction (1993) Geophys. J. Int., 115 (2), pp. 344-366
  • Ghiglione, M.C., Likerman, J., Barberón, V., Giambiagi, L., Aguirre-Urreta, M.B., Suarez, F., Geodynamic context for the deposition of coarse-grained deep-water axial channel systems in the Patagonian Andes (2014) Basin Res., 26, pp. 726-745
  • Ghiglione, M.C., Naipauer, M., Sue, C., Barberón, V., Valencia, V., Aguirre-Urreta, B., Ramos, V.A., U–Pb zircon ages from the northern Austral basin Patagonia (2015) Cretac. Res., 55, pp. 116-128
  • Gorring, M.L., Kay, S.M., Zeitler, P.K., Ramos, V.A., Rubiolo, D., Fernandez, M.I., Panza, J.L., Neogene Patagonian plateau lavas: continental magmas associated with ridge collision at the Chile Triple Junction (1997) Tectonics, 16 (1), pp. 1-17
  • Guillaume, B., Martinod, J., Husson, L., Roddaz, M., Riquelme, R., Neogene uplift of central eastern Patagonia: dynamic response to active spreading ridge subduction? (2009) Tectonics, 28 (2)
  • Guillaume, B., Hertgen, S., Martinod, J., Cerpa, N., Slab dip, surface tectonics: how and when do they change following an acceleration/slow down of the overriding plate? (2018) Tectonophysics, 726, pp. 110-120
  • Heine, C., Zoethout, J., Müller, R.D., Kinematics of the South Atlantic Rift (2013); Hervé, F., Pankhurst, R.J., Fanning, C.M., Calderón, M., Yaxley, G.M., The South Patagonian batholith: 150 my of granite magmatism on a plate margin (2007) Lithos, 97 (3), pp. 373-394
  • Heuret, A., Funiciello, F., Faccenna, C., Lallemand, S., Plate kinematics, slab shape and back-arc stress: a comparison between laboratory models and current subduction zones (2007) Earth Planet. Sci. Lett., 256 (3), pp. 473-483
  • Husson, L., Conrad, C.P., Faccenna, C., Tethyan closure, Andean orogeny, and westward drift of the Pacific Basin (2008) Earth Planet. Sci. Lett., 271 (1), pp. 303-310
  • Lagabrielle, Y., Suárez, M., Rossello, E.A., Hérail, G., Martinod, J., Régnier, M., De la Cruz, R., Neogene to Quaternary tectonic evolution of the Patagonian Andes at the latitude of the Chile Triple Junction (2004) Tectonophysics, 385 (1), pp. 211-241
  • Lallemand, S., Heuret, A., Boutelier, D., On the relationships between slab dip, back-arc stress, upper plate absolute motion, and crustal nature in subduction zones (2005) Geochem. Geophys. Geosyst., 6 (9)
  • Lonsdale, P., Creation of the Cocos and Nazca plates by fission of the Farallon plate (2005) Tectonophysics, 404 (3), pp. 237-264
  • Martinod, J., Funiciello, F., Faccenna, C., Labanieh, S., Regard, V., Dynamical effects of subducting ridges: insights from 3-D laboratory models (2005) Geophys. J. Int., 163 (3), pp. 1137-1150
  • Martinod, J., Husson, L., Roperch, P., Guillaume, B., Espurt, N., Horizontal subduction zones, convergence velocity and the building of the Andes (2010) Earth Planet. Sci. Lett., 299 (3), pp. 299-309
  • Martinod, J., Guillaume, B., Espurt, N., Faccenna, C., Funiciello, F., Regard, V., Effect of aseismic ridge subduction on slab geometry and overriding plate deformation: insights from analogue modeling (2013) Tectonophysics, 588, pp. 39-55
  • Mason, W.G., Moresi, L., Betts, P.G., Miller, M.S., Three-dimensional numerical models of the influence of a buoyant oceanic plateau on subduction zones (2010) Tectonophysics, 483 (1), pp. 71-79
  • Michael, P.J., Emplacement and Differentiation of Miocene Plutons in the Foothills of the Southernmost Andes (1983), (Doctoral dissertation) Columbia University; Pankhurst, R.J., Weaver, S.D., Hervé, F., Larrondo, P., Mesozoic-Cenozoic evolution of the North Patagonian batholith in Aysen, southern Chile (1999) J. Geol. Soc., 156 (4), pp. 673-694
  • Pardo-Casas, F., Molnar, P., Relative motion of the Nazca (Farallón) and South American plates since Late Cretaceous time (1987) Tectonics, 6 (3), pp. 233-248
  • Ramírez de Arellano, C., Putlitz, B., Müntener, O., Ovtcharova, M., High precision U/Pb zircon dating of the Chaltén Plutonic Complex (Cerro Fitz Roy, Patagonia) and its relationship to arc migration in the southernmost Andes (2012) Tectonics, 31 (4)
  • Ramos, V.A., Andean foothills structures in Northern Magallanes Basin, Argentina (1989) Am. Assoc. Pet. Geol. Bull., 73 (7), pp. 887-903
  • Scalabrino, B., Ritz, J.F., Lagabrielle, Y., Using glacial morphology to constrain the impact of the Chile active spreading ridge subduction in Central Patagonia (2009) EGU General Assembly Conference Abstracts, 11, p. 8518
  • Schellart, W.P., Evolution of the slab bending radius and the bending dissipation in three-dimensional subduction models with a variable slab to upper mantle viscosity ratio (2009) Earth Planet. Sci. Lett., 288 (1-2), pp. 309-319
  • Schepers, G., van Hinsbergen, D.J., Spakman, W., Kosters, M.E., Boschman, L.M., McQuarrie, N., South-American plate advance and forced Andean trench retreat as drivers for transient flat subduction episodes (2017) Nat. Commun., p. 8
  • Sdrolias, M., Müller, R.D., Controls on back-arc basin formation (2006) Geochem. Geophys. Geosyst., 7 (4)
  • Silver, P.G., Russo, R.M., Lithgow-Bertelloni, C., Coupling of South American and African plate motion and plate deformation (1998) Science, 279 (5347), pp. 60-63
  • Sobolev, S.V., Babeyko, A.Y., What drives orogeny in the Andes? (2005) Geology, 33 (8), pp. 617-620
  • Somoza, R., Updated Nazca (Farallon)-South America relative motions during the last 40 My: implications for mountain building in the central Andean region (1998) J. S. Am. Earth Sci., 11 (3), pp. 211-215
  • Somoza, R., Ghidella, M.E., Late Cretaceous to recent plate motions in western South America revisited (2012) Earth Planet. Sci. Lett., 331, pp. 152-163
  • Spence, W., Slab pull and the seismotectonics of subducting lithosphere (1987) Rev. Geophys., 25 (1), pp. 55-69
  • Stern, C.R., Kilian, R., Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone (1996) Contrib. Mineral. Petrol., 123 (3), pp. 263-281
  • Torsvik, T.H., Rousse, S., Labails, C., Smethurst, M.A., A new scheme for the opening of the South Atlantic Ocean and the dissection of an Aptian salt basin (2009) Geophys. J. Int., 177 (3), pp. 1315-1333
  • Van Hunen, J., Van den Berg, A.P., Vlaar, N.J., Various mechanisms to induce present-day shallow flat subduction and implications for the younger Earth: a numerical parameter study (2004) Phys. Earth Planet. Inter., 146 (1), pp. 179-194
  • Welkner, D., Geología del área del cerro San Lorenzo: Cordillera Patagónica Oriental, XI Región de Aysén, Chile (47 25′–47 50′S) (1999), Memoria de Título (Inédito), Universidad de Chile Departamento de Geología

Citas:

---------- APA ----------
Salze, M., Martinod, J., Guillaume, B., Kermarrec, J.-J., Ghiglione, M.C. & Sue, C. (2018) . Trench-parallel spreading ridge subduction and its consequences for the geological evolution of the overriding plate: Insights from analogue models and comparison with the Neogene subduction beneath Patagonia. Tectonophysics, 737, 27-39.
http://dx.doi.org/10.1016/j.tecto.2018.04.018
---------- CHICAGO ----------
Salze, M., Martinod, J., Guillaume, B., Kermarrec, J.-J., Ghiglione, M.C., Sue, C. "Trench-parallel spreading ridge subduction and its consequences for the geological evolution of the overriding plate: Insights from analogue models and comparison with the Neogene subduction beneath Patagonia" . Tectonophysics 737 (2018) : 27-39.
http://dx.doi.org/10.1016/j.tecto.2018.04.018
---------- MLA ----------
Salze, M., Martinod, J., Guillaume, B., Kermarrec, J.-J., Ghiglione, M.C., Sue, C. "Trench-parallel spreading ridge subduction and its consequences for the geological evolution of the overriding plate: Insights from analogue models and comparison with the Neogene subduction beneath Patagonia" . Tectonophysics, vol. 737, 2018, pp. 27-39.
http://dx.doi.org/10.1016/j.tecto.2018.04.018
---------- VANCOUVER ----------
Salze, M., Martinod, J., Guillaume, B., Kermarrec, J.-J., Ghiglione, M.C., Sue, C. Trench-parallel spreading ridge subduction and its consequences for the geological evolution of the overriding plate: Insights from analogue models and comparison with the Neogene subduction beneath Patagonia. Tectonophysics. 2018;737:27-39.
http://dx.doi.org/10.1016/j.tecto.2018.04.018