Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Shallow seismicity in the Southern Central Andes is associated with interplate earthquakes due to the subduction of the Nazca plate beneath the South American plate and neotectonic activity, mainly located in the retro-arc region. However, this pattern changes drastically south of 34°S within the transition zone at the Southern Central Andes where crustal seismicity associated with mountain-building processes concentrates at the fore-arc and intra-arc region. In order to define more accurately this transition we used data from a high density-seismic network over the Chilean fore-arc and axial Andean sector (~ 33–34.5°S). We obtained a constraint data set of 77 seismic events located mostly in the Principal Cordillera western flank in the first 10 km of the upper crust. This cluster implies an abrupt change in the pattern of seismicity at the Southern Central Andes with a set of structures in the fore-arc and intra-arc accommodating shortening. This change in the locus of crustal seismicity and particularly its location on the fore-arc and intra-arc south of 34°S is discussed on the light of different hypotheses among which changes in the precipitation pattern and erosion along the Andes were favored. Focalized erosion associated with direction of prevailing Pacific winds south of ~ 34°S could determine subcritical conditions that could be adjusted by out-of-sequence deformation causing crustal earthquakes in the fore-arc region, becoming the retro-arc zone nearly fossilized from a deformational point of view. Additionally, trench sediments associated with this change in the precipitation pattern could also favor decoupling of the subduction zone inhibiting retro-arc seismicity, although it does not explain activation of fore-arc structures south of 34°S and their absence north of this latitude. Finally, inhomogeneous distribution of seismicity through the fore-arc zone south of 34°S is discussed on the light of variable elastic thicknesses. © 2017 Elsevier B.V.

Registro:

Documento: Artículo
Título:Change in the pattern of crustal seismicity at the Southern Central Andes from a local seismic network
Autor:Nacif, S.; Lupari, M.; Triep, E.G.; Nacif, A.; Álvarez, O.; Folguera, A.; Gímenez, M.
Filiación:Instituto Geofísico Sismológico F. Volponi, Universidad Nacional de San Juan, Ruta 12, Km 17, Marquesado, Rivadavia, San Juan, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas, Conicet, Argentina
Instituto de Estudios Andinos, Departamento de Ciencias Geológicas, Universidad Nacional de Buenos Aires, Argentina
Palabras clave:Andean growth; Crustal seismicity; Erosion; Fore-arc and intra-arc and back-arc; Southern Central Andes; Erosion; Geophysics; Plates (structural components); Seismology; Tectonics; Back-arc; Central Andes; Crustal earthquakes; Crustal seismicity; Inhomogeneous distribution; Interplate earthquakes; Precipitation patterns; Sub-critical condition; Earthquakes; backarc basin; earthquake event; erosion; forearc basin; Nazca plate; neotectonics; seismicity; subduction zone; upper crust; Andes; Chile
Año:2017
Volumen:708
Página de inicio:56
Página de fin:69
DOI: http://dx.doi.org/10.1016/j.tecto.2017.04.012
Título revista:Tectonophysics
Título revista abreviado:Tectonophysics
ISSN:00401951
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00401951_v708_n_p56_Nacif

Referencias:

  • Alvarado, P., Sismicidad superficial de los Andes Centrales (33°–35°S; 69.5°–70.5°W) (1998), p. 161. , Departamento. Geofísica, Universidad de Chile (Tesis de Magister en Ciencias, mención Geofísica); Alvarado, P., Barrientos, S., S_aez, M., Astroza, M., Beck, S., Source study and tectonic implications of the historic 1958 Las Melosas crustal earthquake, Chile, compared to earthquake damage (2009) Phys. Earth Planet. Inter., 175, pp. 26-36
  • Alvarez, O., Gimenez, M.E., Martinez, M.P., LinceKlinger, F., Braitenberg, C., New insights into the Andean crustal structure between 32° and 34°S from GOCE satellite gravity data and EGM2008 model (2015) Geodynamic Processes in the Andes of Central Chile and Argentina, Geological Society, London, Special Publications, 399, pp. 183-202. , S.A. Sepúlveda L.B. Giambiagi S.M. Moreiras L. Pinto M. Tunik G.D. Hoke M. Farías
  • Alvarez, O., Gimenez, M., Folguera, A., Spagnotto, S., Bustos, E., Baez, W., Braitenberg, C., New evidence about the subduction of the Copiapó ridge beneath South America, and its connection with the Chilean-Pampean flat slab, tracked by satellite GOCE and EGM2008 models (2015) J. Geodyn., 91C, pp. 65-88
  • Amante, C., Eakins, B.W., ETOPO1 1 arc-Minute Global Relief Model: Procedures, Data Sources and Analysis, National Geophysical Data Center, NESDIS, NOAA (2008), Boulder, CO. U.S. Department of Commerce; Anderson, M.L., Alvarado, P., Zandt, G., Beck, S., Geometry and brittle deformation of the subducting Nazca Plate, Central Chile and Argentina (2007) Geophys. J. Int., 171 (1), pp. 419-434
  • Araujo, M., Suarez, G., Geometry and state of stress of the subducted Nazca plate beneath central Chile and Argentina: evidence from teleseismic data (1994) Geophys. J. Int., 116 (2), pp. 283-303
  • Barrientos, S., Vera, E., Alvarado, P., Monfret, T., Crustal seismicity in central Chile (2004) J. S. Am. Earth Sci., 16, pp. 759-768
  • Beck, S., Barrientos, S.E., Kausel, E., Reyes, M., Source characteristics of historic earthquakes along the central Chile subduction zone (1998) J. S. Am. Earth Sci., 11 (2), pp. 115-129
  • Braitenberg, C., Drigo, R., A crustal model from gravity inversion in Karakorum (1997) Proceedings, International Symposium on Current Crustal Movement and Hazard Reduction in East Asia and South-East Asia, Wuhan, November 4–7, pp. 325-341
  • Braitenberg, C., Zadro, M., Iterative 3D gravity inversion with integration of seismology data: Bollettino di Geophisica Teorica ed Applicata (1999) Proceedings, 2° Joint Meeting IAG, Trieste, v. 40, no. 2
  • Braitenberg, C., Pettenati, F., Zadro, M., Spectral and classical methods in the evaluation of Moho undulations from gravity data: the NE Italian Alps and isostasy (1997) J. Geodyn., 23, pp. 5-22
  • Braitenberg, C., Ebbing, J., Götze, H.J., Inverse modelling of elastic thickness by convolution method-the Eastern Alps as a case example (2002) Earth Planet. Sci. Lett., 202, pp. 387-404
  • Braitenberg, C., Wienecke, S., Ebbing, J., Bom, W., Redfield, T., Joint gravity and isostatic analysis for basement studies-a novel tool (2007) Proceedings, EGM 2007 International Workshop, Innovation on in EM, Grav. and Mag. Methods: A New Perspective for Exploration, Villa Orlandi Capri, Extended Abstracts
  • Burd, A.I., Booker, J.R., Mackie, R., Favetto, A., Pomposiello, M.C., Three dimensional electrical conductivity in the mantle beneath the Matru volcanic field in the Andean back-arc of Argentina Payun near 36.5° S: decapitation of a mantle plume by resurgent upper mantle shear during slab steepening? (2014) Geophys. J. Int., 1, pp. 1-12
  • Cahill, T., Isacks, B.L., Seismicity and shape of the subducted Nazca plate (1992) J. Geophys. Res., 97 (B12), pp. 17503-17529
  • Carretier, S., Regard, V., Vassallo, R., Aguilar, G., Martinod, J., Riquelme, R., Pepin, E., Lagane, C., Slope and Climate Variability Control of Erosion in the Andes of Central Chile Geology (2013), 41 2), pp. 195-198; Carretier, S., Tolorza, V., Rodríguez, M.P., Pepin, E., Aguilar, G., Regard, V., Martinod, J., Guyot, J.L., Erosion in the Chilean Andes between 27°S and 39°S: tectonic, climatic and geomorphic control (2014) Geodynamic Processes in the Andes of Central Chile and Argentina. Geological Society, London, Special Publications, , S.A. Sepúlveda L.B. Giambiagi S.M. Moreiras L. Pinto M. Tunik G.D. Hoke M. Farías
  • Christensen, D., Ruff, L., Rupture process of the March 3, 1985 Chilean earthquake (1986) Geophys. Res. Lett., 13 (8), pp. 721-724
  • Cornejo, P., Mahood, G., Seeing past effects of re-equilibration to reconstruct magmatic gradients in plutons: La Gloria Pluton, central Chilean Andes (1997) Contrib. Mineral. Petrol., 127, pp. 159-175
  • Crotwell, H.P., Owens, T.J., The TauP Toolkit: Flexible Seismic Travel-time and Raypath Utilities Version 2.0 (1998), Department of Geological Sciences, University of South Carolina; Dadson, S.J., Hovius, N., Links between erosion, runoff, variability and seismicity in the Taiwan orogeny (2003) Nature, 426, pp. 648-651
  • Ebbing, J., Braitenberg, C., Wienecke, S., Insights into the lithospheric structure and tectonic setting of the Barents Sea region from isostatic considerations (2007) Geophys. J. Int., 171, pp. 1390-1403
  • Engdahl, E.R., van der Hilst, R., Buland, R., Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. (1998) Bull. Seismol. Soc. Am., 88, pp. 722-743
  • Farías, M., Tectonique, erosion et evolution du relief dans les Andes du Chile Central au cours du neogene (2007), Tesis Doctoral Universite Toulose III Santiago de Chile 238 p; Farías, M., Charrier, R., Carretier, S., Martinod, J., Fock, A., Campbell, D., Cáceres, J., Comte, D., Late Miocene high and rapid surface uplift and its erosional response in the Andes of Central Chile (33°-35°S) (2008) Tectonics, 27 (1)
  • Fock, A., Cronología y tectónica de la exhumación en el neógeno de los Andes de Chile Central entre los 33° y los 34° S (2005), Tesis Grado Magister, Universidad de Chile, Facultad de Ciencias Físicas y Matemáticas Santiago de Chile 235 p; Folguera, A., Ramos, V.A., Collision of the mocha fracture zone and a < 4 Ma old wave of orogenic uplift in the Andes (36°–38° S) (2009) Lithosphere, 1, pp. 364-369
  • Folguera, A., Alvarado, P., Arriagada, C., Ramos, V., Tectonics of the Argentine and Chilean Andes: an introduction (2015) J. S. Am. Earth Sci.
  • Gansser, A., Facts and theories on the Andes (1973) J. Geol. Soc. Lond., 129, pp. 93-131
  • Giambiagi, L., Tunik, M., Barredo, S., Bechis, F., Ghiglione, M., Alvarez, P., Drosina, M., Cinemática de apertura del sector norte de la Cuenca Neuquina (2009) Rev. Asoc. Geol. Argent., 65 (2), pp. 278-292
  • Giambiagi, L., Tassara, A., Mescua, J., Tunik, M., Alvarez, P.P., Godoy, E., Hoke, G., Pagano, S.D., Evolution of shallow and deep structures along the Maipo–Tunuyán transect (33°40′S): from the Pacific coast to the Andean foreland Geological Society (2014), 399. , Special Publications London; Gimenez, M.E., Martínez, M.P., Introcaso, A., A Crustal Model based mainly on gravity data in the area between the Bermejo Basin and the Sierras de Valle Fértil – Argentina (2000) J. S. Am. Earth Sci., 13, pp. 275-286
  • Gimenez, M.E., Braitenberg, C., Martinez, M.P., Introcaso, A., A Comparative Analysis of Seismological and Gravimetric Crustal Thicknesses below the Andean Region with Flat Subduction of the Nazca Plate (2009) Journal of Geophysics, , Hindawi Publishing Corporation International (Article ID 607458, 8 p)
  • Hardebeck, J., Shearer, P., A new method for determining first motion focal mechanisms (2002) Bull. Seismol. Soc. Am., 92 (6), pp. 2264-2276
  • Hardebeck, J., Shearer, P., HASH: A FORTRAN Program for Computing earthquake First Motion Focal Mechanisms – v1.1 (2005); Havskov, J., Ottemöller, L., Canabrava, R.L.P., SEISAN: multiplatform implementation of MINISEED/SEED (2007) Orfeus Newsletter, 7 (2)
  • Hervé, F., Munizaga, F., Parada, M.A., Brook, M., Pankhurst, R.J., Snelling, N.J., Drake, R., Granitoids of the coastal range of central Chile: geochronology and geologic setting (1988) J. S. Am. Earth Sci., 1, pp. 185-194
  • Hervé, F., Greene, F., Pankhurst, R.J., Methamorphosed fragments of oceanic crust in the upper Paleozoic Chonos accrecionary complex, southern Chile (1994) J. S. Am. Earth Sci., 7 (3-4), pp. 263-270
  • Hildreth, W., Moorbath, S., Crustal contributions to arc magmatism in the Andes of Central Chile (1988) Contrib. Mineral. Petrol., 98 (4), pp. 455-489
  • Introcaso, A., Pacino, M.C., Guspi, F., The Andes of Argentina and Chile: crustal configuration, isostasy, shortening and tectonic features from gravity data (2000) Temas de Geociencia, 5, p. 31
  • Isacks, B., Jordan, T.E., Allmendinger, R., Ramos, V.A., La segmentación tectónica de los Andes Centrales y su relación con la placa de Nazca subductada (1982) V Congreso Latinoamericano de Geología, Actas, 111, 587–606, , Aires Buenos
  • Kay, S.M., Maksaev, V., Moscoso, R., Mpodozis, C., Nasi, C., Probing the evolving Andean lithosphere: mid-late tertiary magmatism rocks in Chile (29°–30°30′S) over the modern zone of subhorizontal subduction (1987) J. Geophys. Res., 92 (B7), pp. 6173-6189
  • Kay, S., Godoy, E., Kurtz, A., Episodic arc migration, crustal thickening, subduction erosion, and magmatism in the south-central Andes (2005) GSA Bull., 117 (1-2), pp. 67-88
  • Kendrick, E., Bevis, M., Smalley, R.J., Brooks, B.A., Barriga, R., Lauría, E., Souto, L.P., The Nazca-South America Euler vector and its rate of change (2003) J. S. Am. Earth Sci., 16 (2), pp. 125-131
  • Kilb, D., Hardebeck, J., Fault parameter constraints using relocated earthquakes: a validation of first-motion focal-mechanism data (2006) Bull. Seismol. Soc. Am., 96 (3), pp. 1140-1158
  • Lange, D., Tilmann, F., Barrientos, S.E., Contreras-Reyes, E., Methe, P., Moreno, M., Heit, B., Beck, S., Aftershock seismicity of the 27 February 2010 Mw 8.8 Maule earthquake rupture zone. Earth Planet (2012) Sci. Lett., 317-318, pp. 413-425
  • Liener, B.R., Havskov, J., A computer program for locating earthquakes locally, regionally and globally (1995) Seismol. Res. Lett., 66, pp. 26-36
  • Maurer, V., Kissling, E., Husen, S., Quintero, R., Detection of systematic errors in travel-time data using a minimum 1D model: application to Costa Rica seismic tomography (2010) Bull. Seismol. Soc. Am., 100 (2), pp. 629-639
  • Miranda, S., Robles, J.A., Posibilidades de atenuacion cortical en la cuenca Cuyana a partir del analisis de datos de gravedad (2002) Revista de la Asociacion Geologica Argentina, 57, pp. 271-279
  • Moreno, M.S., Bolte, J., Klotz, J., Melnick, D., Impact of megathrust geometry on inversión of coseismic slip from geodetic data: application to the 1960 Chile earthquake (2009) Geophys. Res. Lett., L16310 (36)
  • Mpodozis, C., Cornejo, P., Cenozoic Tectonics and Porphyry Copper Systems of the Chilean Andes (2012) Soc. Econ. Geol. Spec. Pub., 16, pp. 329-360
  • Nacif, S., Triep, E., Spagnotto, S., Aragon, E., Furlani, R., Álvarez, O., The flat to normal subduction transition study to obtain the Nazca plate morphology using high resolution seismicity data fromthe Nazca plate in Central Chile (2015) Tectonophysics, 657 (2015), pp. 102-112
  • Oldenburg, D., The inversion and interpretation of gravity anomalies (1974) Geophysics, 39, pp. 526-536
  • Pardo, M., Comte, D., Monfret, T., Seismotectonic and stress distribution in the central Chile subduction zone (2002) J. S. Am. Earth Sci., 15 (1), pp. 11-22
  • Parker, R.L., The rapid calculation of potential anomalies (1972) Geophys. J. R. Astron. Soc., 31, pp. 447-455
  • Pavlis, N.K., Holmes, S.A., Kenyon, S.C., Factor, J.K., An earth gravitational model to degree 2160: EGM2008 (2008) Proceedings, General Assembly of the European Geosciences Union: Vienna, Austria, p. 2008
  • Pavlis, N.K., Holmes, S.A., Kenyon, S.C., Factor, J.K., The development and evaluation of the Earth gravitational model 2008 (EGM2008) (2012) J. Geophys. Res., 117 (B04406)
  • Pepin, E., Carretier, S., Guyot, J.L., Escobar, F., Specific suspended sediment yields of the Andean rivers of Chile and their relationship to climate, slope and vegetation (2010) Hydrological Sciences Journal – Journal des Sciences Hydrologiques, 55 (7), p. 2010
  • Perez-Gussinyé, M., Lowry, A.R., Phipps Morgan, J., Tassara, A., Effective elastic thickness variations along the Andean margin and their relationship to subduction geometry (2008) Geochem. Geophys. Geosyst., 9
  • Persson, K.S., Sokoutis, D., Analogue models of orogenic wedges controlled by erosion (2002) Tectonophysics, 356, pp. 323-336
  • Pesicek, J.D., Engdahl, E.R., Thurber, C.H., DeShon, H.R., Lange, D., Mantle subducting slab structure in the region of the 2010 M8.8 Maule earthquake (30–40°S), Chile (2012) Geophys. J. Int., 191, pp. 317-324
  • Ramos, V., Cristallini, E.O., Perez, D.J., The pampean flat-slab of the Central Andes (2002) J. S. Am. Earth Sci., 15, pp. 59-78
  • Rodi, W., Grid-search event location with non-Gaussian error models (2006) Phys. Earth Planet. Inter., 158, pp. 55-66
  • Rojas Vera, E.A., Sellés, D., Folguera, A., Gímenez, M., Ruiz, F., Orts, D., Zamora, G., Ramos, V.A., The origin of the Loncopúe trough in the retroarc of the southern Central Andes from field, geophysical and geochemical data (2014) Tectonophysics, 637, pp. 1-19
  • Ruiz, S., Grandin, R., Dionicio, V., Satriano, C., Fuenzalida, A., Vignyc, C., Kiraly, E., Campos, J., The Constitución earthquake of 25 March 2012: a large aftershock of the Maule earthquake near the bottom of the seismogenic zone (2013) Earth Planet. Sci. Lett., 377-378, pp. 347-357
  • Sacek, V., Ussami, N., Reappraisal of the effective elastic thickness for the sub-Andes using 3-D finite element flexural modelling, gravity and geological con- straints (2009) Geophys. J. Int., 179, pp. 778-786
  • Sagripanti, L., Rojas Vera, E.A., Gianni, G., Folguera, A., Harvey, J., Farías, M., Ramos, V., Neotectonic reactivation of the western section of the Malargüe fold and thrust belt Tromen volcanic plateau, Southern Central Andes (2015) Geomorphology, 232 (2015), pp. 164-181
  • Sbar, M.L., Barazangi, M., Dorman, J., Scholz, C.H., Smith, R.B., Tectonics of the intermountain Seismic Belt, western United States, Microearthquake seismicity and composite fault plane solutions (1972) Geol. Soc. Am. Bull., 83, pp. 13-28
  • Snoke, J.A., Munsey, J.W., Teague, A.G., Bollinger, G.A., A program for focal mechanism determination by combined used of polarity and SV-P amplitude ratio data (1984) Earthq. Notes, 55, p. 15
  • Stewart, J., Watts, A.B., Gravity anomalies and spatial variations of flexural rigidity at mountain ranges (1997) J. Geophys. Res., 102, pp. 5327-5352
  • Syracuse, E.M., Abers, G.A., Global compilation of variations in slab depth beneath arc volcanoes and implications (2006) Geochem. Geophys. Geosyst., 7 (5)
  • Tassara, A., Interaction between the Nazca and South American plates and formation of the Altiplano–Puna plateau: review of a flexural analysis along the Andean margin (158–348S) (2005) Tectonophysics, 399, pp. 39-57
  • Tassara, A., Yáñez, G., Relación entre el espesor elástico de la litósfera y la segmentación tectónica del margen Andino (15–47°S) (2003) Rev. Geol. Chile, 30, pp. 159-186
  • Tassara, A., Swain, C., Hackney, R., Kirby, J., Elastic thickness structure of South America estimated using wavelets and satellite-derived gravity data (2007) Earth Planet. Sci. Lett., 253, pp. 17-36
  • Vening-Meinesz, F.A., Tables Fondamentales pour la Reduction Isostatique Regionale (1939) Bulletin Géodésique, 63, pp. 711-776
  • Wienecke, S., A new analytical solution for the calculation of flexural rigidity: significance and applications (2006), http://www.diss.fuberlin.de, PhD Thesis Free University Berlin Berlin 126 p‥ (World Wide Web Address:); Wienecke, S., Braitenberg, C., Göetze, H.J., A new analytical solution estimating the flexural rigidity in the Central Andes (2007) Geophys. J. Int., 169, pp. 789-794
  • Yáñez, G., Cembrano, J., Pardo, M., Ranero, C., Selles, D., The challenger-Juan Fernandez-Maipo major tectonic transition of the Nazca-Andean subduction system at 33–34° S: geodynamics evidence and implications (2002) J. S. Am. Earth Sci., 15, pp. 23-38
  • Zadro, M., Braitenberg, C., Spectral methods in gravity inversion: the geopotential field and it's derivatives (1997) Annali di geofisica XL, 5, pp. 1433-1443

Citas:

---------- APA ----------
Nacif, S., Lupari, M., Triep, E.G., Nacif, A., Álvarez, O., Folguera, A. & Gímenez, M. (2017) . Change in the pattern of crustal seismicity at the Southern Central Andes from a local seismic network. Tectonophysics, 708, 56-69.
http://dx.doi.org/10.1016/j.tecto.2017.04.012
---------- CHICAGO ----------
Nacif, S., Lupari, M., Triep, E.G., Nacif, A., Álvarez, O., Folguera, A., et al. "Change in the pattern of crustal seismicity at the Southern Central Andes from a local seismic network" . Tectonophysics 708 (2017) : 56-69.
http://dx.doi.org/10.1016/j.tecto.2017.04.012
---------- MLA ----------
Nacif, S., Lupari, M., Triep, E.G., Nacif, A., Álvarez, O., Folguera, A., et al. "Change in the pattern of crustal seismicity at the Southern Central Andes from a local seismic network" . Tectonophysics, vol. 708, 2017, pp. 56-69.
http://dx.doi.org/10.1016/j.tecto.2017.04.012
---------- VANCOUVER ----------
Nacif, S., Lupari, M., Triep, E.G., Nacif, A., Álvarez, O., Folguera, A., et al. Change in the pattern of crustal seismicity at the Southern Central Andes from a local seismic network. Tectonophysics. 2017;708:56-69.
http://dx.doi.org/10.1016/j.tecto.2017.04.012