Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Understanding the relationships between density and spatio-thermal variations at convergent plate boundaries is important for deciphering the present-day dynamics and evolution of subduction zones. In particular, the interaction between densification due to mineralogical phase transitions and slab pull forces is subject to ongoing investigations. We have developed a two-dimensional subduction zone model that is based on thermodynamic equilibrium assemblage calculations and includes the effects of melting processes on the density distribution in the lithosphere. Our model calculates the "metamorphic density" of rocks as a function of pressure, temperature and chemical composition in a subduction zone down to 250. km. We have used this model to show how the hydration, dehydration, partial melting and fractionation processes of rocks all influence the metamorphic density and greatly depend on the temperature field within the subduction system. These processes are largely neglected by other approaches that reproduce the density distribution within this complex tectonic setting. Our model demonstrates that the initiation of eclogitization (i.e., when crustal rocks reach higher densities than the ambient mantle) of the slab is not the only significant process that makes the descending slab denser and generates the slab pull force. Instead, the densification of the lithospheric mantle of the sinking slab starts earlier than eclogitization and contributes significantly to slab pull in the early stages of subduction. Accordingly, the complex metamorphic structure of the slab and the mantle wedge has an important impact on the development of subduction zones. © 2014 Elsevier B.V.

Registro:

Documento: Artículo
Título:Relative impact of mantle densification and eclogitization of slabs on subduction dynamics: A numerical thermodynamic/thermokinematic investigation of metamorphic density evolution
Autor:Duesterhoeft, E.; Quinteros, J.; Oberhänsli, R.; Bousquet, R.; de Capitani, C.
Filiación:Institute of Earth and Environmental Science, University of Potsdam, Karl-Liebknecht-Str. 24-25, Potsdam-Golm, 14476, Germany
Institute of Geosciences, University of Kiel, Ludewig-Meyn-Str. 10, Kiel, 24118, Germany
Deutsches GeoForschungsZentrum GFZ, Telegrafenberg, Potsdam, 14473, Germany
Department of Computer Sciences, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina
Institute of Mineralogy and Petrography, University of Basel, Bernoullistrasse 30, Basel, 4056, Switzerland
Palabras clave:Density; Melt; Metamorphism; Subduction; Thermo-mechanical modeling; Thermodynamic modeling; Densification; Densification; Density (specific gravity); Density (specific gravity); Melting; Melting; Phase transitions; Phase transitions; Structural geology; Structural geology; Tectonics; Tectonics; Thermodynamics; Thermodynamics; Convergent plate boundaries; Convergent plate boundaries; Metamorphic structures; Metamorphic structures; Metamorphism; Metamorphism; Subduction; Subduction; Subduction zone modeling; Subduction zone modeling; Thermodynamic equilibria; Thermodynamic equilibria; Thermodynamic model; Thermodynamic model; Thermomechanical model; Thermomechanical model; Metamorphic rocks; mantle structure; metamorphism; plate boundary; plate convergence; slab; subduction zone; thermodynamics
Año:2014
Volumen:637
Página de inicio:20
Página de fin:29
DOI: http://dx.doi.org/10.1016/j.tecto.2014.09.009
Título revista:Tectonophysics
Título revista abreviado:Tectonophysics
ISSN:00401951
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00401951_v637_n_p20_Duesterhoeft

Referencias:

  • Afonso, J.C., Zlotnik, S., The subductability of continental lithosphere: The before and after story (2011) Arc-Continent Collision, pp. 53-86. , Springer Verlag, Berlin, Heidelberg, (chapter 3), D. Brown, P.D. Ryan (Eds.)
  • Afonso, J., Ranalli, G., Fernandez, M., Thermal expansivity and elastic properties of the lithospheric mantle: results from mineral physics of composites (2005) Phys. Earth Planet. Inter., 149, pp. 279-306
  • Angiboust, S., Wolf, S., Burov, E., Agard, P., Yamato, P., Effect of fluid circulation on subduction interface tectonic processes: insights from thermo-mechanical numerical modelling (2012) Earth Planet. Sci. Lett., pp. 238-248
  • Arcay, D., Tric, E., Doin, M., Numerical simulations of subduction zones: effect of slab dehydration on the mantle wedge dynamics (2005) Phys. Earth Planet. Inter., 149, pp. 133-153
  • Audet, P., Bostock, M.G., Christensen, N.I., Peacock, S.M., Seismic evidence for overpressured subducted oceanic crust and megathrust fault sealing (2009) Nature, 457, pp. 76-78
  • Babeyko, A.Y., Sobolev, S.V., High-resolution numerical modeling of stress distribution in visco-elasto-plastic subducting slabs (2008) Lithos, 103, pp. 205-216
  • Bach, W., Peucker-Ehrenbrink, B., Hart, S.R., Blusztajn, J.S., Geochemistry of hydrothermally altered oceanic crust: DSDP/ODP Hole 504B-implications for seawater-crust exchange budgets and Sr- and Pb-isotopic evolution of the mantle (2003) Geochem. Geophys. Geosyst., 4, pp. 1-29
  • Berman, R., Internally-consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2 (1988) J. Petrol., 29, pp. 445-552
  • Billen, M.I., Modeling the dynamics of subducting slabs (2008) Annu. Rev. Earth Planet. Sci., 36, pp. 325-356
  • Bina, C.R., Kawakatsu, H., Buoyancy, bending, and seismic visibility in deep slab stagnation (2010) Phys. Earth Planet. Inter., 183, pp. 330-340
  • Bina, C.R., Stein, S., Marton, F.C., Van Ark, E.M., Implications of slab mineralogy for subduction dynamics (2001) Phys. Earth Planet. Inter., 127, pp. 51-66
  • Bostock, M.G., Hyndman, R.D., Rondenay, S., Peacock, S.M., An inverted continental Moho and serpentinization of the forearc mantle (2002) Nature, 417, pp. 536-538
  • Bousquet, R., Goffé, B., Henry, P., Le Pichon, X., Chopin, C., Kinematic, thermal and petrological model of the Central Alps: Lepontine metamorphism in the upper crust and eclogitisation of the lower crust (1997) Tectonophysics, 273, pp. 105-127
  • Bousquet, R., Goffé, B., Le Pichon, X., de Capitani, C., Chopin, C., Henry, P., Comment on "Subduction factory: 1. Theoretical mineralogy, densities, seismic wave speeds, and H2O contents" by Bradley R. Hacker, Geoffrey A. Abers, and Simon M. Peacock (2005) J. Geophys. Res., 110, pp. 1-3
  • Brown, G.C., Mussett, A.E., (1993) The Inaccessible Earth: An Integrated View of Its Structure and Composition, , Chapman & Hall, London
  • Bucher, K., Grapes, R., (2011) Petrogenesis of Metamorphic Rocks, , Springer, Berlin Heidelberg
  • Connolly, J., Kerrick, D., Metamorphic controls on seismic velocity of subducted oceanic crust at 100-250km depth (2002) Earth Planet. Sci. Lett., 204, pp. 61-74
  • Davies, J.H., The role of hydraulic fractures and intermediate-depth earthquakes in generating subduction-zone magmatism (1999) Nature, 398, pp. 142-145
  • de Capitani, C., Brown, T., The computation of chemical equilibrium in complex systems containing non-ideal solutions (1987) Geochim. Cosmochim. Acta, 51, pp. 2639-2652
  • de Capitani, C., Petrakakis, K., The computation of equilibrium assemblage diagrams with Theriak/Domino software (2010) Am. Mineral., 95, pp. 1006-1016
  • Doin, M., Henry, P., Subduction initiation and continental crust recycling: the roles of rheology and eclogitization (2001) Tectonophysics, 342, pp. 163-191
  • Duesterhoeft, E., (2013) The impact of metamorphic processes on physical properties: A view from thermodynamics to geodynamics, , (PhD thesis), University of Potsdam
  • Duesterhoeft, E., de Capitani, C., THERIAK_D: an add-on to implement equilibrium computations in geodynamic models (2013) Geochem. Geophys. Geosyst., 14, pp. 4962-4967
  • Duesterhoeft, E., Bousquet, R., Wichura, H., Oberhänsli, R., Anorogenic plateau formation: the importance of density changes in the lithosphere (2012) J. Geophys. Res., 117, pp. 1-13
  • Duretz, T., Gerya, T.V., Kaus, B.J.P., Andersen, T.B., Thermomechanical modeling of slab eduction (2012) J. Geophys. Res., 117, pp. 1-17
  • Ellis, D.E., Wyllie, P.J., Hydration and melting reactions in the system MgO-SiO2-H2O at pressures up to 100kbar (1979) Am. Mineral., 64, pp. 41-48
  • Faccenda, M., Gerya, T.V., Mancktelow, N.S., Moresi, L., Fluid flow during slab unbending and dehydration: Implications for intermediate-depth seismicity, slab weakening and deep water recycling (2012) Geochem. Geophys. Geosyst., 13, pp. 1-23
  • Forsyth, D., Uyeda, S., On the relative importance of the driving forces of plate motion (1975) Geophys. J. Roy. Astron. Soc., 43, pp. 163-200
  • Ganguly, J., Freed, A., Saxena, S., Density profiles of oceanic slabs and surrounding mantle: integrated thermodynamic and thermal modeling, and implications for the fate of slabs at the 660km discontinuity (2009) Phys. Earth Planet. Inter., 172, pp. 257-267
  • Gerya, T., Future directions in subduction modeling (2011) J. Geodyn., 52, pp. 344-378
  • Gerya, T.V., Stöckhert, B., Perchuk, A.L., Exhumation of high-pressure metamorphic rocks in a subduction channel: a numerical simulation (2002) Tectonics, 21, p. 1056
  • Gerya, T.V., Yuen, D.A., Maresch, W.V., Thermomechanical modelling of slab detachment (2004) Earth Planet. Sci. Lett., 226, pp. 101-116
  • Gerya, T.V., Connolly, J.A.D., Yuen, D.A., Why is terrestrial subduction one-sided? (2008) Geology, 36, pp. 43-46
  • Ghiorso, M.S., Hirschmann, M.M., Reiners, P.W., The pMELTS: A revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3GPa (2002) Geochem. Geophys. Geosyst., 3, pp. 1-36
  • Giunchi, C., Ricard, Y., High-pressure/low-temperature metamorphism and the dynamics of an accretionary wedge (1999) Geophys. J. Int., 136, pp. 620-628
  • Goffé, B., Bousquet, R., Henry, P., Le Pichon, X., Effect of the chemical composition of the crust on the metamorphic evolution of orogenic wedges (2003) J. Metamorph. Geol., 21, pp. 123-141
  • Green, H.I., Houston, H., The mechanics of deep earthquakes (1995) Annu. Rev. Earth Planet. Sci., 23, pp. 169-213
  • Grove, T.L., Till, C.B., Krawczynski, M.J., The role of H2O in subduction zone magmatism (2012) Annu. Rev. Earth Planet. Sci., 40, pp. 413-439
  • Guillot, S., Hattori, K., Agard, P., Schwartz, S., Vidal, O., Exhumation processes in oceanic and continental subduction contexts: a review (2009) Frontiers in Earth Sciences, pp. 175-205. , Springer, Berlin, Heidelberg, S. Lallemand, F. Funiciello (Eds.) Subduction Zone Geodynamics
  • Hacker, B.R., H2O subduction beyond arcs (2008) Geochem. Geophys. Geosyst., 9, pp. 1-24
  • Hacker, B.R., Abers, G.A., Peacock, S.M., Subduction factory 1. Theoretical mineralogy, densities, seismic wave speeds, and H2O contents (2003) J. Geophys. Res., 108, pp. 1-26
  • Hebert, L.B., Antoshechkina, P., Asimow, P., Gurnis, M., Emergence of a low-viscosity channel in subduction zones through the coupling of mantle flow and thermodynamics (2009) Earth Planet. Sci. Lett., 278, pp. 243-256
  • Hebert, L.B., Asimow, P., Antoshechkina, P., Fluid source-based modeling of melt initiation within the subduction zone mantle wedge: Implications for geochemical trends in arc lavas (2009) Chem. Geol., 266, pp. 306-319
  • Henry, P., Le Pichon, X., Goffé, B., Kinematic, thermal and petrological model of the Himalayas: constraints related to metamorphism within the underthrust Indian crust and topographic elevation (1997) Tectonophysics, 273, pp. 31-56
  • Hetényi, G., Godard, V., Cattin, R., Connolly, J., Incorporating metamorphism in geodynamic models: the mass conservation problem (2011) Geophys. J. Int., 186, pp. 6-10
  • Hofmann, A.W., Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust (1988) Earth Planet. Sci. Lett., 90, pp. 297-314
  • Holland, T., Powell, R., An internally consistent thermodynamic data set for phases of petrological interest (1998) J. Metamorph. Geol., 16, pp. 309-343
  • Isacks, B., Oliver, J., Sykes, L.R., Seismology and the new global tectonics (1968) J. Geophys. Res., 73, pp. 5855-5899
  • Jaupart, C., Mareschal, J.C., (2011) Heat Generation and Transport in the Earth, , Cambridge University Press, Cambridge, U.K
  • John, T., Gussone, N., Podladchikov, Y.Y., Bebout, G.E., Dohmen, R., Halama, R., Klemd, R., Seitz, H.M., Volcanic arcs fed by rapid pulsed fluid flow through subducting slabs (2012) Nat. Geosci., 5, pp. 489-492
  • Kárason, H., Van der Hilst, R.D., Constraints on mantle convection from seismic tomography (2002) Geophys. Monogr., 121, pp. 277-288
  • Kato, A., Iidaka, T., Ikuta, R., Yoshida, Y., Katsumata, K., Iwasaki, T., Sakai, S., Hirata, N., Variations of fluid pressure within the subducting oceanic crust and slow earthquakes (2010) Geophys. Res. Lett., 37, pp. 1-5
  • Kawamoto, T., Holloway, J., Melting temperature and partial melt chemistry of H2O-saturated mantle peridotite to 11 gigapascals (1997) Science, 276, pp. 240-243
  • Kelley, K.A., Plank, T., Ludden, J., Staudigel, H., Composition of altered oceanic crust at ODP Sites 801 and 1149 (2003) Geochem. Geophys. Geosyst., 4, pp. 1-21
  • Köther, N., Götze, H.J., Gutknecht, B., Jahr, T., Jentzsch, G., Lücke, O., Mahatsente, R., Zeumann, S., The seismically active Andean and Central American margins: can satellite gravity map lithospheric structures? (2012) J. Geodyn., pp. 207-218
  • Le Pichon, X., Sea-floor spreading and continental drift (1968) J. Geophys. Res., 73, pp. 3661-3697
  • Le Pichon, X., Henry, P., Goffé, B., Uplift of Tibet: from eclogites to granulites-implications for the Andean Plateau and the Variscan belt (1997) Tectonophysics, 273, pp. 57-76
  • Lee, C.T.A., Chen, W.P., Possible density segregation of subducted oceanic lithosphere along a weak serpentinite layer and implications for compositional stratification of the Earth's mantle (2007) Earth Planet. Sci. Lett., 255, pp. 357-366
  • Li, X.P., Rahn, M., Bucher, K., Serpentinites of the Zermatt-Saas ophiolite complex and their texture evolution (2004) J. Metamorph. Geol., 22, pp. 159-177
  • Li, Z.H., Gerya, T.V., Burg, J.-P., Influence of tectonic overpressure on P-T paths of HP-UHP rocks in continental collision zones: thermomechanical modelling (2010) J. Metamorph. Geol., 28, pp. 227-247
  • McKenzie, D.P., Speculations on the consequences and causes of plate motions* (1969) Geophys. J. Roy. Astron. Soc., 18, pp. 1-32
  • Morgan, W.J., Rises, trenches, great faults, and crustal blocks (1968) J. Geophys. Res., 73, pp. 1959-1982
  • Negredo, A., Valera, J., Carminati, E., TEMSPOL: a MATLAB thermal model for deep subduction zones including major phase transformations (2004) Comput. Geosci., 30, pp. 249-258
  • Oxburgh, E.R., Parmentier, E.M., Compositional and density stratification in oceanic lithosphere-causes and consequences (1977) J. Geol. Soc., 133, pp. 343-355
  • Peacock, S.M., Thermal effects of metamorphic fluids in subduction zones (1987) Geology, 15, pp. 1057-1060
  • Peacock, S.M., Subduction Top to Bottom (1996) Geophys. Monogr. Ser., 96, pp. 119-133
  • Petrini, K., Podladchikov, Y., Lithospheric pressure-depth relationship in compressive regions of thickned crust (2000) J. Metamorph. Geol., 18, pp. 67-77
  • Poli, S., Schmidt, M.W., Petrology of subducted slabs (2002) Annu. Rev. Earth Planet. Sci., 30, pp. 207-235
  • Popov, A.A., Sobolev, S.V., Slim3d: a tool for three-dimensional thermomechanical modeling of the lithospheric deformation with elasto-visco-plastic rheology (2008) Phys. Earth Planet. Inter., 171, pp. 55-75
  • Pourteau, A., Candan, O., Oberhänsli, R., High-pressure metasediments in central Turkey: constraints on the Neotethyan closure history (2010) Tectonics, 29, pp. 1-18
  • Prezzi, C.B., Götze, H.J., Schmidt, S., 3D density model of the Central Andes (2009) Phys. Earth Planet. Inter., 177, pp. 217-234
  • Quinteros, J., Sobolev, S.V., Constraining kinetics of metastable olivine in the Marianas slab from seismic observations and dynamic models (2012) Tectonophysics, pp. 48-55
  • Quinteros, J., Sobolev, S.V., Why has the Nazca plate slowed since the Neogene? (2013) Geology, 41, pp. 31-34
  • Raz, U., Girsperger, S., Thompson, A.B., Thermal expansion, compressibility and volumetric changes of quartz obtained by single crystal dilatometry to 700°C and 3.5 kilobars (0.35GPa) (2002) Schweiz. Mineral. Petrogr. Mitt., 82, pp. 561-574
  • Ricard, Y., Mattern, E., Matas, J., Synthetic tomographic images of slabs from mineral physics (2005) Geophysical Monograph Series, 160, pp. 283-300. , AGU, Washington, D. C. R. van der Hilst, J.D. Bass, J. Matas, J. Trampert (Eds.) Earth's Deep Mantle: Structure, Composition, and Evolution
  • Ringwood, A., Green, D., An experimental investigation the gabbro-eclogite transformation and some geophysical implications (1966) Tectonophysics, 3, pp. 383-427
  • Ringwood, A., Irifune, T., Nature of the 650-km seismic discontinuity: implications for mantle dynamics and differentiation (1988) Nature, 331, pp. 131-136
  • Robie, R.A., Hemingway, B.S., Thermodynamic properties of minerals and related substances at 298.15K and 1bar (105 Pascals) pressure and at higher temperatures (1995) U.S. Geol. Surv. Bull., 2131, p. 461
  • Rüpke, L.H., Morgan, J.P., Hort, M., Connolly, J.A.D., Ru, L.H., Are the regional variations in Central American arc lavas due to differing basaltic versus peridotitic slab sources of fluids? (2002) Geology, 30, pp. 1035-1038
  • Schellart, W.P., Quantifying the net slab pull force as a driving mechanism for plate tectonics (2004) Geophys. Res. Lett., 31, p. L07611
  • Schmidt, M., Poli, S., Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation (1998) Earth Planet. Sci. Lett., 163, pp. 361-379
  • Simon, N.S., Podladchikov, Y.Y., The effect of mantle composition on density in the extending lithosphere (2008) Earth Planet. Sci. Lett., 272, pp. 148-157
  • Sobolev, S.V., Babeyko, A.Y., Modeling of mineralogical composition, density and elastic wave velocities in anhydrous magmatic rocks (1994) Surv. Geophys., 15, pp. 515-544
  • Sobolev, S.V., Babeyko, A.Y., What drives orogeny in the Andes? (2005) Geology, 33, pp. 617-620
  • Sobolev, S.V., Babeyko, A.Y., Koulakov, I., Oncken, O., Mechanism of the Andean Orogeny: Insight from Numerical Modeling (2006) The Andes Frontiers in Earth Sciences, pp. 513-535. , Springer, Berlin Heidelberg, (chapter Part IV), O. Oncken, G. Chong, G. Franz, P. Giese, H.J. Götze, V.A. Ramos, M.R. Strecker, P. Wigger (Eds.)
  • Stein, C., Stein, S., A model for the global variation in oceanic depth and heat flow with lithospheric age (1992) Nature, 359, pp. 123-129
  • Stern, R.J., Subduction zones (2002) Rev. Geophys., 40, p. 1012
  • Tašárová, Z.A., Towards understanding the lithospheric structure of the southern Chilean subduction zone (36 °S-42 °S) and its role in the gravity field (2007) Geophys. J. Int., 170, pp. 995-1014
  • Tassara, A., Echaurren, A., Anatomy of the Andean subduction zone: three-dimensional density model upgraded and compared against global-scale models (2012) Geophys. J. Int., 189, pp. 161-168
  • Ulmer, P., Trommsdorff, V., Serpentine stability to mantle depths and subduction-related magmatism (1995) Science, 268, pp. 858-861
  • van Keken, P.E., Currie, C., King, S.D., Behn, M.D., Cagnioncle, A., He, J., Katz, R.F., Wang, K., A community benchmark for subduction zone modeling (2008) Phys. Earth Planet. Inter., 171, pp. 187-197
  • Vlaar, N., Wortel, M., Lithospheric aging, instability and subduction (1976) Tectonophysics, 32, pp. 331-351
  • Wada, I., Behn, M.D., Shaw, A.M., Effects of heterogeneous hydration in the incoming plate, slab rehydration, and mantle wedge hydration on slab-derived H2O flux in subduction zones (2012) Earth Planet. Sci. Lett., pp. 60-71
  • Wayte, G.J., Worden, R.H., Rubie, D.C., Droop, G.T.R., A TEM study of disequilibrium plagioclase breakdown at high pressure: the role of infiltrating fluid (1989) Contrib. Mineral. Petrol., 101, pp. 426-437
  • Zhao, D., Seismic structure and origin of hotspots and mantle plumes (2001) Earth Planet. Sci. Lett., 192, pp. 251-265

Citas:

---------- APA ----------
Duesterhoeft, E., Quinteros, J., Oberhänsli, R., Bousquet, R. & de Capitani, C. (2014) . Relative impact of mantle densification and eclogitization of slabs on subduction dynamics: A numerical thermodynamic/thermokinematic investigation of metamorphic density evolution. Tectonophysics, 637, 20-29.
http://dx.doi.org/10.1016/j.tecto.2014.09.009
---------- CHICAGO ----------
Duesterhoeft, E., Quinteros, J., Oberhänsli, R., Bousquet, R., de Capitani, C. "Relative impact of mantle densification and eclogitization of slabs on subduction dynamics: A numerical thermodynamic/thermokinematic investigation of metamorphic density evolution" . Tectonophysics 637 (2014) : 20-29.
http://dx.doi.org/10.1016/j.tecto.2014.09.009
---------- MLA ----------
Duesterhoeft, E., Quinteros, J., Oberhänsli, R., Bousquet, R., de Capitani, C. "Relative impact of mantle densification and eclogitization of slabs on subduction dynamics: A numerical thermodynamic/thermokinematic investigation of metamorphic density evolution" . Tectonophysics, vol. 637, 2014, pp. 20-29.
http://dx.doi.org/10.1016/j.tecto.2014.09.009
---------- VANCOUVER ----------
Duesterhoeft, E., Quinteros, J., Oberhänsli, R., Bousquet, R., de Capitani, C. Relative impact of mantle densification and eclogitization of slabs on subduction dynamics: A numerical thermodynamic/thermokinematic investigation of metamorphic density evolution. Tectonophysics. 2014;637:20-29.
http://dx.doi.org/10.1016/j.tecto.2014.09.009