Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In the south Central Andes region, the Nazca oceanic plate that subducts beneath the South American plate is characterized by a rough topography derived from different oceanic features that collide against the continental margin. These features determine an important segmentation of both the margin and of the interplate zone. The Chilean subduction margin has been characterized by megathrust earthquakes affecting the plate interface with large rupture areas reaching hundreds of kilometers parallel to the trench. The occurrence of these phenomena has been linked, among other causes, to the subduction of sediments that fill the trench and their spatial relation to the relatively prominent oceanic features. We calculated the topography corrected vertical gravity gradient from GOCE satellite data and from EGM2008 model in order to delineate mass heterogeneities related to density variations along the south-central Chile subduction zone. Obtained results show a spatial relation between the subduction of the Nazca oceanic highs and associated along-strike segmentation of the vertical gravity gradients over the interplate zone. We compared our results with the different rupture areas and found a good correspondence with the ellipses for the main earthquakes such as the Valdivia-1960 and Maule-2010 ones. Then, we compared vertical gravity gradients with slip distribution obtained from different models, finding that they are actually correlated with high slip over negative vertical gradient. The GOCE derived gradient adjusts better with the main slip distribution contour since its signal has a characteristic high wavelength. Instead, the EGM2008 model presents a better performance in defining the high frequency anomalies. However, the last results need to be considered only in those regions where the statistical comparison with GOCE data shows a good performance. This is because EGM2008 model data present varying quality of the original terrestrial data, while the quality of the GOCE data is locally homogeneous. © 2014 Elsevier B.V.

Registro:

Documento: Artículo
Título:GOCE derived vertical gravity gradient delineates great earthquake rupture zones along the Chilean margin
Autor:Álvarez, O.; Nacif, S.; Gimenez, M.; Folguera, A.; Braitenberg, C.
Filiación:Instituto Geofísico y Sismológico Ing. Volponi, Universidad Nacional de San Juan, Ruta 12-Km17, San Juan, Argentina
Consejo Nacional de Investigaciones Cientifícas y Técnicas, CONICET, Argentina
Fondo Argentino Sectorial, Agencia de Promoción Científica y Tecnológica, FONARSEC, Argentina
INDEAN - Instituto de Estudios Andinos Don Pablo Groeber, Departamento de Cs. Geológicas - FCEN - Pab. II, Universidad de Buenos Aires, Argentina
Department of Mathematics and Geosciences, University of Trieste, Via Weiss, I-34127 Trieste, Italy
Palabras clave:Earthquake; GOCE; High oceanic features; Rupture zones; Trench sediments; Vertical gravity gradient; Earthquake effects; Earthquakes; Gravitation; Density variations; GOCE; Gravity gradients; High oceanic features; Megathrust earthquakes; Rupture zone; Statistical comparisons; Vertical gradients; Planetary surface analysis; continental margin; earthquake rupture; GOCE; gravity field; Nazca plate; satellite data; subduction zone; Chile
Año:2014
Volumen:622
Página de inicio:198
Página de fin:215
DOI: http://dx.doi.org/10.1016/j.tecto.2014.03.011
Título revista:Tectonophysics
Título revista abreviado:Tectonophysics
ISSN:00401951
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00401951_v622_n_p198_Alvarez

Referencias:

  • Alvarez, O., Gimenez, M.E., Braitenberg, C., Folguera, A., GOCE satellite derived gravity and gravity gradient corrected for topographic effect in the South Central Andes region (2012) Geophys. J. Int., 190 (2), pp. 941-959
  • Alvarez, O., Gimenez, M.E., Braitenberg, C., Nueva metodología para el cálculo del efecto topográfico para la corrección de datos satelitales (2013) Rev. Asoc. Geol. Argent., 70 (4), pp. 422-429
  • Alvarez, O., Gimenez, M.E., Martinez, M.P., LinceKlinger, F., Braitenberg, C., New insights into the Andean crustal structure between 32° and 34°S from GOCE satellite gravity data and EGM2008 model (2014) Geological Society, London, Special Publications, 399. , http://dx.doi.org/10.1144/SP399.3, (on-line fisrt. S.A. Sepúlveda, L.B. Giambiagi, S.M. Moreiras, L. Pinto, M. Tunik, G.D. Hoke, M. Farías (Eds.) Geodynamic Processes in the Andes of Central Chile and Argentina
  • Amante, C., Eakins, B.W., ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis (2009) NOAA Technical Memorandum NESDIS NGDC-24, 19, March 2009
  • Bangs, N.L., Cande, S.C., Episodic development of a convergent margin inferred from structures and processes along the southern Chile margin (1997) Tectonics, 16 (3), pp. 489-505
  • Barrientos, S.E., Slip distribution of the 1985 Central Chile earthquake (1988) Tectonophysics, 145 (3-4), pp. 225-241
  • Barrientos, S.E., Dual seismogenic behaviour: the 1985 central Chile earthquake (1995) Geophys. Res. Lett., 22, pp. 3541-3544
  • Barrientos, S., Ward, S., The 1960 Chile earthquake: inversion for slip distribution from surface deformation (1990) Geophys. J. Int., 103 (3), pp. 589-598
  • Barthelmes, F., Definition of functionals of the geopotential and their calculation from spherical harmonic models (2009) Scientific Technical Report, STR09/02, , http://icgem.gfz-postdam.de, GFZ German Research Centre for Geosciences, Postdam, Germany, (World Wide Web Address: Theory and formulas used by the calculation service of the International Centre for Global Earth Models (ICGEM)
  • Beck, S., Barrientos, S.E., Kausel, E., Reyes, M., Source characteristics of historic earthquakes along the central Chile subduction zone (1998) J. S. Am. Earth Sci., 11 (2), pp. 115-129
  • Beresnev, I.A., Uncertainties in finite-fault slip inversions: to what extent to believe? (a critical review) (2003) Bull. Seismol. Soc. Am., 93, pp. 2445-2458
  • Bilek, S.L., Influence of subducting topography on earthquake rupture (2007) The Seismogenic Zone of Subduction Thrust Faults, pp. 123-146. , Columbia University Press, T. Dixon, C. Moore (Eds.)
  • Bilek, S.L., Schwartz, S.Y., De Shon, H.R., Control of seafloor roughness on earthquake rupture behaviour (2003) Geology, 31 (5), pp. 455-458
  • Bomfim, E.P., Braitenberg, C., Molina, E.C., Mutual evaluation of global gravity models (EGM2008 and GOCE) and terrestrial data in Amazon Basin, Brazil (2013) Geophys. J. Int., 195 (2), pp. 870-882
  • Bouman, J., Ebbing, J., Fuchs, M., Reference frame transformation of satellite gravity gradients and topographic mass reduction (2013) J. Geophys. Res. Solid Earth, 118 (2), pp. 759-774
  • Braitenberg, C., Exploration of tectonic structures with GOCE in Africa and across-continents (2014) Int. J. Appl. Earth Obs. Geoinf, , (in Press)
  • Braitenberg, C., Mariani, P., Ebbing, J., Sprlak, M., The enigmatic Chad lineament revisited with global gravity and gravity-gradient fields (2011) Geological Society, London, Special Publications, 357, pp. 329-341. , V. Hinsbergen (Ed.) The Formation and Evolution of Africa: A Synopsis of 3.8Ga of Earth History
  • Braitenberg, C., Mariani, P., Pivetta, T., GOCE observations in exploration geophysics (2011) Proceedings of '4th International GOCE User Workshop', Munich, Germany, 31 March-1 April 2011, , (ESA SP-696)
  • Campos, J., Hatzfeld, D., Madariaga, R., Lopez, G., Kausel, E., Zollo, A., Iannacone, G., Lyon-Caen, H., A seismological study of the 1835 seismic gap in south-central Chile (2002) Phys. Earth Planet. In., 132, pp. 177-195
  • Cande, S.C., Leslie, R.B., Parra, J.C., Hobart, M., Interaction between the Chile ridge and the Chile trench: geophysical and geothermal evidence (1987) J. Geophys. Res., 92, pp. 495-520
  • Cifuentes, I.L., The 1960 Chilean earthquakes (1989) J. Geophys. Res., 94, pp. 665-680
  • Cisternas, M., Atwater, B.F., Torrejon, F., Sawai, Y., Machuca, G., Lagos, M., Eipert, A., Husni, M., Predecessors of the giant 1960 Chile earthquake (2005) Nature, 437
  • Cloos, M., Thrust-type subduction zone earthquakes and seamount asperities: a physical model for seismic rupture (1992) Geology, 20 (7), pp. 601-604
  • Cloos, M., Shreve, R.L., Shear-zone thickness and the seismicity of Chilean- and Marianas-type subduction zones (1996) Geology, 24 (2), pp. 107-110
  • Contreras-Reyes, E., Carrizo, D., Control of high oceanic features and subduction channel on earthquake ruptures along the Chile-Peru subduction zone (2011) Phys. Earth Planet. In., 186, pp. 49-58
  • Contreras-Reyes, E., Flueh, E., Grevemeyer, L., Tectonic control on sediment accretion and subduction off south-central Chile: Implications for coseismic rupture processes of the 1960 and 2010 megathrust earthquakes (2010) Tectonics, 29, pp. TC6018
  • Darwin, C., On the connection of certain volcanic phenomena in South America; and on the formation of mountain chains and volcanoes, as the effect of the same power by which continents are elevated (1840) Trans. Geol. Soc. Lond. Ser., pp. 601-631
  • Darwin, C., (1876) Journal of Researches into the Natural History and Geology of the Countries Visited During the Voyage of the H.M.S. Beagle Round the World, , John Murray, London
  • Das, S., Aki, K., Fault plane with barriers: a versatile earthquake model (1977) J. Geophys. Res., 82, pp. 5658-5670
  • Das, S., Watts, A.B., Effect of subducting seafloor topography on the rupture characteristics of great subduction zone earthquakes (2009) Subduction Zone Geodynamics, pp. 103-118. , Springer-Verlag, Berlin-Heidelberg, S. Lallemand, F. Funiceillo (Eds.)
  • Delouis, B., Nocquet, J., Vallée, M., Slip distribution of the February 27, 2010 Mw=8.8 Maule earthquake, central Chile, from static and high-rate GPS, InSAR, and broadband teleseismic data (2010) Geophys. Res. Lett., 37
  • DeMets, C., Gordon, R.G., Argus, D.F., Geologically current plate motions (2010) Geophys. J. Int., 181, pp. 1-80
  • Engdahl, E.R., Villasenor, A., Global Seismicity: 1900-1999 (2002) International Handbook of Earthquake and Engineering Seismology, Part A, Chapter 41, pp. 665-690. , Academic Press, W.H.K. Lee, H. Kanamori, P.C. Jennings, C. Kisslinger (Eds.)
  • Eyike, A., Werner, S.C., Ebbing, J., Dicoum, E.M., On the use of global potential field models for regional interpretation of the West and Central African Rift System (2010) Tectonophysics, 492 (1-4), pp. 25-39
  • Farías, M., Vargas, G., Tassara, A., Carretier, S., Baize, S., Melnick, D., Bataille, K., Land-level changes produced by the Mw 8.8 2010 Chilean earthquake (2010) Science, 329 (5994), p. 916
  • FitzRoy, R., Narrative of the surveying voyages of His Majesty's ships Adventure and Beagle between the years 1826 and 1836 (1839) Describing Their Examination of the Southern Shores of South America, and the Beagle's Circumnavigation of the Globe, , Henry Colburn, London
  • Floberghagen, R., Fehringer, M., Lamarre, D., Muzi, D., Frommknecht, B., Steiger, C., Piñeiro, J., da Costa, A., Mission design, operation and exploitation of the gravity field and steady-state ocean circulation explorer mission (2011) J. Geodesy, 85, pp. 749-758
  • Flueh, E.R., Vidal, N., Ranero, C.R., Hokja, A., von Huene, R., Bialas, J., Hinz, K., Zelt, C., Seismic investigation of the continental margin off- and onshore Valparaiso, Chile (1998) Tectonophysics, 288, pp. 251-263
  • Franke, D., Schnabel, M., Ladage, S., Tappin, D.R., Neben, S., Djajadihardja, Y.S., Müller, C., Gaedicke, C., The great Sumatra-Andaman earthquakes imaging the boundary between the ruptures of the great 2004 and 2005 earthquakes (2008) Earth Planet. Sci. Lett., 269, pp. 118-130
  • Grombein, T., Heck, B., Seitz, K., Untersuchungen zur effizienten Berechnung topographischer Effekte auf den Gradiententensor am Fallbeispiel der Satellitengradiometriemission GOCE (2010) KIT Scientific Reports, 7547, pp. 1-94. , Karlsruhe Institute of Technology
  • Grombein, T., Heck, B., Seitz, K., Optimized formulas for the gravitational field of a tesseroid (2013) J. Geodesy, 87, pp. 600-645
  • Hackney, R., Echtler, H.P., Franz, G., Götze, H.J., Lucassen, F., Marchenko, D., Melnick, D., Wienecke, S., The segmented overriding plate and coupling at the South-Central Chilean Margin (36-42°S) (2006) The Andes - Active Subduction Orogeny, Frontiers in Earth Science Series, pp. 355-375. , Springer-Verlag, Berlin Heidelberg New York, O. Oncken, G. Chong, G. Franz, P. Giese, H.J. Götze, V.A. Ramos, M.R. Strecker, P. Wigger (Eds.)
  • Heck, B., Seitz, K., A comparison of the tesseroid, prism and point mass approaches for mass reductions in gravity field modeling (2007) J. Geodesy, 81, pp. 121-136
  • Heuret, A., Lallemand, S., Funiciello, F., Piromallo, C., Faccenna, C., Physical characteristics of subduction interface type seismogenic zones revisited (2011) Geochem. Geophys. Geosyst., 12, pp. Q01004
  • Heuret, A., Conrad, C.P., Funiciello, F., Lallemand, S., Sandri, L., Relation between subduction megathrust earthquakes, trench sediment thickness and upper plate strain (2012) Geophys. Res. Lett., 39, pp. L05304
  • Hirt, C., Gruber, T., Featherstone, W.E., Evaluation of the first GOCE static gravity field models using terrestrial gravity, vertical deflections and EGM2008 quasigeoid heights (2011) J. Geodesy, 85, pp. 723-740
  • Hirt, C., Kuhn, M., Featherstone, W.E., Göttl, F., Topographic/isostatic evaluation of new-generation GOCE gravity field models (2012) J. Geophys. Res., 117, pp. B05407
  • Hofmann-Wellenhof, B., Moritz, H., (2006) Physical Geodesy, p. 286. , Springer, Berlin
  • Janak, J., Sprlak, M., New software for gravity field modelling using spherical armonic (2006) Geodetic Cartogr. Horiz., 52, pp. 1-8. , (in Slovak)
  • Japas, M.S., Re, G.H., Geodynamic impact of arrival and subduction of oblique aseismic ridges (2005) 6° Symposium on Andean Geodynamics (ISAG 2005, Barcelona), Extended Abstracts, pp. 408-410
  • Kanamori, H., Great earthquakes at island arcs and the lithosphere (1971) Tectonophysics, 12, pp. 187-198
  • Kanamori, H., Mechanics of earthquakes (1994) Annu. Rev. Earth Planet. Sci., 22, pp. 207-237
  • Kelleher, J.A., Rupture zones of large South American earthquakes and some predictions (1972) J. Geophys. Res., 77, pp. 2087-2103
  • Kelleher, J., McCann, W., Buoyant zones, great earthquakes, and unstable boundaries of subduction (1976) J. Geophys. Res., 81, pp. 4885-4896
  • Kendrick, E., Bevis, M., Smalley, R., Brooks, B., Vargas, R.B., Lauría, E., Fortes, L.P.S., The Nazca - South America Euler vector and its rate of change (2003) J. S. Am. Earth Sci., 16, pp. 125-131
  • Kodaira, S., Takahashi, N., Nakanishi, A., Miura, S., Kaneda, Y., Subducted seamount imaged in the rupture zone of the 1946 Nankaido earthquake (2000) Science, 289, pp. 104-106
  • Kopp, H., Invited review paper: the control of subduction zone structural complexity and geometry on margin segmentation and seismicity (2013) Tectonophysics, 589, pp. 1-16
  • Köther, N., Götze, H.J., Gutknecht, B.D., Jahr, T., Jentzsch, G., Lücke, O.H., Mahatsente, R., Zeumann, S., The seismically active Andean and Central American margins: can satellite gravity map lithospheric structures? (2012) J. Geodyn., pp. 207-218
  • Lamb, S., Davis, P., Cenozoic climate change as a possible cause for the rise of the Andes (2003) Nature, 425, pp. 792-797
  • Lange, D., Tilmann, F., Barrientos, S.E., Contreras-Reyes, E., Methe, P., Moreno, M., Heit, B., Beck, S., Aftershock seismicity of the 27 February 2010 Mw 8.8 Maule earthquake rupture zone (2012) Earth Planet. Sci. Lett., pp. 413-425
  • Laursen, J., Scholl, D.W., von Huene, R., Neotectonic deformation of the central Chile margin: deepwater forearc basin formation in response to hot spot ridge and seamount subduction (2002) Tectonics, 21 (5), p. 1038
  • Lay, T., Kanamori, H., Ruff, L., The asperity model and the nature of large subduction zone earthquakes (1982) Earthq. Prediction Res., 1, pp. 3-71
  • Lay, T., Ammon, C.J., Kanamori, H., Koper, K.D., Sufri, O., Hutko, A.R., Teleseismic inversion for rupture process of the 27 February 2010 Chile (Mw 8.8) earthquake (2010) Geophys. Res. Lett., 37, pp. L1330. , (1. doi: I 0.1 029/201 OGL043379)
  • Lee, S.H., Ma, K.F., Chen, H.W., Effects of fault geometry and slip style on near-fault static displacements caused by the 1999 Chi-Chi, Taiwan earthquake (2006) Earth Planet. Sci. Lett., 241 (1-2), pp. 336-350
  • Li, X., Vertical resolution: gravity versus vertical gravity gradient (2001) Lead. Edge, 20, pp. 901-904
  • Li, Y., Braitenberg, C., Yang, Y., Interpretation of gravity data by the continuous wavelet transform: the case of the Chad lineament (North-Central Africa) (2013) J. Appl. Geophys., 90, pp. 62-70
  • Lindquist, K., Engle, K., Stahlke, D., Price, E., Global topography and bathymetry grid improves research efforts (2004) EOS, 85 (19)
  • Llenos, A.L., Mc Guire, J.J., Influence of fore-arc structure on the extent of great subduction zone earthquakes (2007) J. Geophys. Res., 112, pp. B09301
  • Lorito, S., Romano, F., Atzori, S., Tong, X., Avallone, A., McCloskey, J., Cocco, M., Piatanesi, A., Limited overlap between the seismic gap and coseismic slip of the great 2010 Chile earthquake (2011) Nat. Geosci., 4 (3), pp. 173-177
  • Mariani, P., Braitenberg, C., Ussami, N., Explaining the thick crust in Paraná basin, Brazil, with satellite GOCE gravity observations (2013) J. S. Am. Earth Sci., 45, pp. 209-223
  • Mayer-Gürr, T., ITG-Grace03s: the latest GRACE gravity field solution computed in Bonn (2007) Paper presented at the Joint International GSTM and SPP Symposium, 15-17 October, Potsdam, Germany
  • McCann, W.R., Nishenko, S.P., Sykes, L.R., Krause, J., Seismic gaps and plate tectonics: seismic potential for major boundaries (1979) Pure Appl. Geophys., 117 (6), pp. 1082-1147
  • Melnick, D., Bookhagen, B., Strecker, M.R., Echtler, H.P., Segmentation of megathrust rupture zones from fore-arc deformation patterns over hundreds to millions of years, Arauco peninsula, Chile (2009) J. Geophys. Res., 114, pp. B01407
  • Mendoza, C., Hartzell, S., Monfret, T., Wide band analysis of the 3 March 1985 central Chile earthquake: overall source process and rupture history (1994) Bull. Seismolical Soc. Am., 84, pp. 269-283
  • Mochizuki, K., Yamada, T., Shinohara, M., Yamanaka, Y., Kanazawa, T., Weak interplate coupling by seamounts and repeating M [U+0334] 7 earthquakes (2008) Science, 321, pp. 1194-1197
  • Mordojovich, C., Sedimentary basins of Chilean Pacific offshore (1981) AAPG Stud. Geol., 12, pp. 63-82
  • Moreno, M.S., Bolte, J., Klotz, J., Melnick, D., Impact of megathrust geometry on inversion of coseismic slip from geodetic data: application to the 1960 Chile earthquake (2009) Geophys. Res. Lett., (36). , L16310
  • Moreno, M.S., Melnick, D., Rosenau, M., Baez, J., Klotz, J., Oncken, O., Tassara, A., Hase, H., Toward understanding tectonic control on the Mw 8.8 2010 Maule Chile earthquake (2012) Earth Planet. Sci. Lett., pp. 152-165
  • Müller, R.D., Landgrebe, T.C.W., The link between great earthquakes and the subduction of oceanic fracture zones (2012) Solid Earth, 3, pp. 447-465
  • Page, M.T., Custódio, S., Archuleta, R.J., Carlson, J.M., Constraining earthquake source inversions with GPS data: 1. Resolution-based removal of artifacts (2009) J. Geophys. Res., 114, pp. B01314
  • Pail, R., Bruisma, S., Migliaccio, F., Förste, C., Goiginger, H., Schuh, W.D., Höck, E., Tscherning, C.C., First GOCE gravity field models derived by three different approaches (2011) J. Geodesy, 85, pp. 819-843
  • Pavlis, N.K., Holmes, S.A., Kenyon, S.C., Factor, J.K., An earth gravitational model to degree 2160: EGM2008 (2008) Paper Presented at the 2008 General Assembly of the European Geosciences Union, Vienna, Austria
  • Pavlis, N.K., Holmes, S.A., Kenyon, S.C., Factor, J.K., The development and evaluation of the Earth Gravitational Model 2008 (2012) J. Geophys. Res., 117, pp. B04406
  • Plafker, G., Savage, J.C., Mechanism of the Chilean earthquake of May 21 and 22, 1960 (1970) Geol. Soc. Am. Bull., 81, pp. 1001-1030
  • Pollitz, F.F., Brooks, B., Tong, X., Bevis, M.G., Foster, J.H., Bürgmann, R., Smalley, R.J., Blanco, M., Coseismic slip distribution of the February 27, 2010 Mw 8.8 Maule, Chile earthquake (2011) Geophys. Res. Lett., 38. , L09309
  • Ranero, C., von Huene, R., Weinrebe, W., Reichert, C., Tectonic processes along the Chile convergent margin (2006) The Andes-Active Subduction Orogeny, Frontiers in Earth Science Series, pp. 91-121. , Springer-Verlag, New York, Oncken (Ed.)
  • Reguzzoni, M., Sampietro, D., An inverse gravimetric problem with GOCE data (2010) Gravity, Geoid and Earth Observation, pp. 451-456. , Springer-Verlag, International Association of Geodesy Symposia
  • Robinson, D.P., (2007) Identification of Geological Features Controlling the Earthquake Rupture Process from Analysis of Broadband Seismograms, p. 145. , Ph.D., Department of Earth Sciences, University of Oxford, Oxford
  • Ruegg, J., Rudloff, A., Vigny, C., Madariaga, R., de Chabalier, J.B., Campos, J., Kausel, E., Dimitrov, D., Interseismic strain accumulation measured by GPS in the seismic gap between Constitución and Concepción in Chile (2009) Phys. Earth Planet. Inter., 175 (1-2), pp. 78-85
  • Ruff, L.J., Do trench sediments affect great earthquake occurrence in subduction zones? (1989) Pure Appl. Geophys., 129, pp. 263-282
  • Ruff, L.J., Seamounts make earthquakes (1996) Nature, 381, pp. 371-372
  • Ruff, L.J., Kanamori, H., Seismicity and the subduction process (1980) Phys. Earth Planet. Inter., 23, pp. 240-252
  • Ruiz, S., Madariaga, R., Astroza, M., Saragoni, G.R., Lancieri, M., Vigny, C., Campos, J., Short period rupture process of the 2010 Mw8.8 Maule earthquake in Chile (2012) Earthq. Spectra, 28 (S1), pp. S1-S18
  • Ruiz, S., Grandin, R., Dionicio, V., Satriano, C., Fuenzalida, A., Vignyc, C., Kiraly, E., Campos, J., The Constitución earthquake of 25 March 2012: a large aftershock of the Maule earthquake near the bottom of the seismogenic zone (2013) Earth Planet. Sci. Lett., pp. 347-357
  • Rummel, R., Yi, W., Stummer, C., GOCE gravitational gradiometry (2011) J. Geodesy, 85 (11), pp. 777-790. , (2011.33)
  • Schertwath, M., Contreras-Reyes, E., Flueh, E., Grevemeyer, J., Krabbenhoeft, A., Papenberg, C., Petersen, C., Weinrebe, R.W., Deep lithospheric structures along the southern central Chile margin from wide-angle P-wave modelling (2009) Geophys. J. lnt., 179 (1), pp. 579-600
  • Scholl, D., Huene, R., Kirby, S., The Aleutian Alaska subduction zone is prone to rupture in great and giant megathrust earthquakes-how scientific information can mitigate consequences (2010) Newsletter of the Alaska Geological Society, , BP Energy Center, (September 2010)
  • Scholz, C.H., Small, C., The effect of seamount subduction on seismic coupling (1997) Geology, 25 (6), pp. 487-490
  • Schweller, W.J., Kulm, L.D., Prince, R.A., Tectonics structure, and sedimentary framework of the Perú-Chile Trench (1981) Memoirs of the Geological Society of America, 154, pp. 23-349. , L.D. Kulm (Ed.) Nazca Plate: Crustal formation and Andean convergence
  • Shao, G., Li, X., Liu, Q., Zhao, X., Yano, T., Ji, C., Preliminary slip model of the Feb 27, 2010 Mw=8.9 Maule, Chile Earthquake, , http://www.geol.uvsb.edu/faculty/ji/big_earthquakes/2010/02/27/chile_2_27.html
  • Siebert, L., Simkin, T., Volcanoes of the world: an illustrated catalog of Holocene volcanoes and their eruptions (2002) Smithsonian Institution, Global Volcanism Program Digital Information Series, GVP-3, , http://www.volcano.si.edu/world/, (World Wide Web Address:
  • Singh, S.C., Hananto, N., Mukti, M., Robinson, D.P., Das, S., Chauhan, A., Carton, H., Djajadihardja, Y., Aseismic zone and earthquake segmentation associated with a deep subducted seamount in Sumatra (2011) Nat. Geosci., 4, pp. 308-311
  • Sobiesiak, M.M., Meyer, U., Schmidt, S., Götze, H.J., Krawczyk, C., Asperity generating upper crustal sources revealed by b-value and isostatic residual anomaly grids in the area of Antofagasta (2007) J. Geophys. Res., 112, pp. B12308
  • Song, T.R., Simons, M., Large trench-parallel gravity variations predict seismogenic behavior in subduction zones (2003) Science, 301, pp. 630-633
  • Sparkes, R., Tilmann, F., Hovius, N., Hillier, J., Subducted seafloor relief stops rupture in South American great earthquakes: implications for rupture behaviour in the 2010 Maule, Chile earthquake (2010) Earth Planet. Sci. Lett., 298, pp. 89-94
  • Stummer, C., Siemes, C., Pail, R., Frommknecht, B., Floberghagen, R., Upgrade of the GOCE level 1b gradiometer processor (2012) Adv. Space Res., 49 (4), pp. 739-752
  • Tassara, A., Control of forearc density structure on megathrust shear strength along the Chilean subduction zone (2010) Tectonophysics, 495, pp. 34-47
  • Tong, X., Sandwell, D., Luttrell, K., Brooks, B., Bevis, M., Shimada, M., Foster, J., Caccamise, D.J., The 2010 Maule, Chile earthquake: downdip rupture limit revealed by space geodesy (2010) Geophys. Res. Lett., 37
  • Tscherning, C.C., Computation of the second-order derivatives of the normal potential based on the representation by a Legendre series (1976) Manuscripta Geod., 1 (1), pp. 71-92
  • Udias, A., Madariaga, R., Buforn, E., Muñoz, D., Ros, M., The large Chilean historical earthquakes of 1647, 1657, 1730, and 1751 from contemporary documents (2012) Bull. Seismol. Soc. Am., 102 (4), pp. 1639-1653
  • Udias, A., Buforn, E., Madariaga, R., Large Chilean earthquakes and tsunamis of 1730 and 1751: new analysis of historical data. EGU General Assembly (2013) Geophys. Res. Abstr., 15. , (EGU2013-1079)
  • Uieda, L., Ussami, N., Braitenberg, C.F., Computation of the gravity gradient tensor due to topographic masses using tesseroids (2010) Eos. Trans. AGU, 91 (26). , http://code.google.com/p/tesseroids/, (Meeting America Supply, Abstract G22A-04. World Wide Web Address:
  • Uyeda, S., Kanamory, H., Back-arc opening and the mode of subduction (1979) J. Geophys. Res., 84, pp. 1049-1061
  • Vigny, C., Socquet, A., Peyrat, S., Ruegg, J.C., Métois, M., Madariaga, R., Morvan, S., Kendrick, E., The 2010 Mw 8.8 Maule megathrust earthquake of Central Chile, monitored by GPS (2011) Science, 332 (6036), pp. 1417-1421
  • Völker, D., Wiedicke, M., Ladage, S., Gaedicke, C., Reichert, C., Rauch, K., Kramer, W., Heubeck, C., Latitudinal variation in sedimentary processes in the Peru-Chile trench off Central Chile (2006) The Andes- Active Subduction Orogeny. Frontiers in Earth Science Series, Part II, pp. 193-216. , Springer-Verlag, Berlin Heidelberg New York, Oncken (Ed.)
  • Von Huene, R., Corvalán, J., Flueh, E.R., Hinz, K., Korstgard, J., Ranero, C.R., Weinrebe, W., CONDOR scientists Tectonic control of the subducting Juan Fernández Ridge on the Andean margin near Valparaiso, Chile (1997) Tectonics, 16 (3), pp. 474-488
  • Wang, K., Bilek, S., Do subducting seamounts generate or stop large earthquakes? (2011) Geology, 39, pp. 819-822
  • Watts, A.B., Koppers, A.A.P., Robinson, D.P., Seamount subduction and earthquakes (2010) Oceanography, 23 (1), pp. 166-173
  • Wells, R.E., Blakely, R.J., Sugiyama, Y., Scholl, D.W., Dinterman, P.A., Basin centered asperities in great subduction zone earthquakes: a link between slip, subsidence and subduction erosion? (2003) J. Geophys. Res., 108 (B10), pp. 2507-2536
  • Wessel, P., Smith, W.H.F., New, improved version of the generic mapping tools released (1998) Eos. Trans. AGU, 79 (47), p. 579
  • Whittaker, J., Goncharov, A., Williams, S., Müller, R.D., Leitchenkov, G., Global sediment thickness data set updated for the Australian-Antarctic Southern Ocean (2013) Geochem. Geophys. Geosyst., 14, pp. 3297-3305
  • Wild-Pfeiffer, F., A comparison of different mass element for use in gravity gradiometry (2008) J. Geodesy, 82, pp. 637-653
  • Seismic imaging of a convergent continental margin and plateau in the central Andes (Andean Continental Research Project 1996 (ANCORP'96)) (2003) J. Geophys. Res., 108 (B7), p. 2328. , ANCORP Working Group
  • Yáñez, G.A., Ranero, C.R., von Huene, R., Díaz, J., Magnetic anomaly interpretation across the southern central Andes (32°S-34°S): the role of the Juan Fernandez Ridge in the late Tertiary evolution of the margin (2001) J. Geophys. Res., 106 (B4). , 6,325-6,345
  • Yi, W., Rummel, R., A comparison of GOCE gravitational models with EGM2008 (2014) J. Geodyn., 73, pp. 14-22

Citas:

---------- APA ----------
Álvarez, O., Nacif, S., Gimenez, M., Folguera, A. & Braitenberg, C. (2014) . GOCE derived vertical gravity gradient delineates great earthquake rupture zones along the Chilean margin. Tectonophysics, 622, 198-215.
http://dx.doi.org/10.1016/j.tecto.2014.03.011
---------- CHICAGO ----------
Álvarez, O., Nacif, S., Gimenez, M., Folguera, A., Braitenberg, C. "GOCE derived vertical gravity gradient delineates great earthquake rupture zones along the Chilean margin" . Tectonophysics 622 (2014) : 198-215.
http://dx.doi.org/10.1016/j.tecto.2014.03.011
---------- MLA ----------
Álvarez, O., Nacif, S., Gimenez, M., Folguera, A., Braitenberg, C. "GOCE derived vertical gravity gradient delineates great earthquake rupture zones along the Chilean margin" . Tectonophysics, vol. 622, 2014, pp. 198-215.
http://dx.doi.org/10.1016/j.tecto.2014.03.011
---------- VANCOUVER ----------
Álvarez, O., Nacif, S., Gimenez, M., Folguera, A., Braitenberg, C. GOCE derived vertical gravity gradient delineates great earthquake rupture zones along the Chilean margin. Tectonophysics. 2014;622:198-215.
http://dx.doi.org/10.1016/j.tecto.2014.03.011