Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Calyceraceae is a small family with six traditionally recognized genera and 47 species from southern South America. Most species grow along the Andes (of both Argentina and Chile) and in arid regions of the Patagonian steppe. This family belongs to the well-supported MGCA clade within Asterales, which includes Menyanthaceae + Goodeniaceae + Calyceraceae + ​ Asteraceae. Calyceraceae is monophyletic and sister to Asteraceae, one of the five largest families of angiosperms. Although Calyceraceae is clearly distinct as a family, its genera are not, and taxonomic revisionary effort has confirmed the lack of sharp boundaries among genera. We performed a phylogenetic analysis of Calyceraceae with a broad taxon sampling (41 of 47 species), and with sequence data from multiple regions from the nuclear (ITS) and plastid genomes (ycg6-psbM, psbM-trnD, trnS-trnG, trnH-psbA, trnD-trnT) using maximum parsimony and Bayesian approaches. We aimed at identifying monophylectic groups, their putative morphological synapomorphies and their geographical distribution; we also estimated divergence times and examined chromosomes numbers in an evolutionary context. We obtained well-resolved and strongly supported phylogenies that show Calyceraceae to be divided into two major clades with geographically structured subclades within each. Our results indicate that an early split within Calyceraceae occurred about 27.4 Ma, probably related to differential changes in chromosome numbers, which allowed the two lineages to evolve in sympatry. We found that major natural subgroups diverged 15-12 Ma, following the Early-Miocene South Andes construction stage. Finally, the diversification of the extant species is probably associated to Andean orogeny and climate changes in the last 5-4 Myr. We recovered Acicarpha as monophyletic, while the remaining traditionally recognized genera of Calyceraceae are para- or polyphyletic. Most species of Moschopis are included in the Glutinose group, but M. monocephala is more closely related to some Calyceraspecies. Calycera is divided into two clades: the Calycera group and the Pilose group. All species of Nastanthus are placed in a well-supported main group with species of Gamocarpha and Boopis. Gamocarpha could be monophyletic after exclusion of G. dentata andG. angustifolia, but is nested within Nastanthus and Boopis species. Boopis is clearly polyphyletic with its species distributed in all main groups. © International Association for Plant Taxonomy (IAPT) 2016.

Registro:

Documento: Artículo
Título:Insights into the phylogeny and evolutionary history of Calyceraceae
Autor:Denham, S.S.; Zavala-Gallo, L.; Johnson, L.A.; Pozner, R.E.
Filiación:Instituto de Botánica Darwinion (Consejo Nacional de Investigaciones Científicas y Técnicas, Academia Nacional de Ciencias Exactas, Físicas y Naturales), Casilla de correo 22, San Isidro, Buenos Aires, B1642HYD, Argentina
Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Avenida 122 y 60, La Plata, Buenos Aires, Argentina
Department of Biology and M. L. Bean Life Science Museum, Brigham Young University, 4102 LSB, Provo, UT 84602, United States
Palabras clave:Andean clades; Divergence times; Molecular phylogeny; Morphology; Poly-paraphyletic genera; South America; Andean orogeny; chromosome; divergence; evolutionary biology; herb; phylogeny; taxonomy; Andes; Argentina; Chile; Acicarpha; Asteraceae; Asterales; Boopis; Calycera; Calyceraceae; Magnoliophyta
Año:2016
Volumen:65
Número:6
Página de inicio:1328
Página de fin:1344
DOI: http://dx.doi.org/10.12705/656.7
Título revista:Taxon
Título revista abreviado:Taxon
ISSN:00400262
CODEN:TAXNA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00400262_v65_n6_p1328_Denham

Referencias:

  • Antonelli, A., Sanmartín, I., Why are there so many plant spcies in the Neotropics? (2011) Taxon, 60, pp. 403-414
  • Benko-Iseppon, A.M., Morawetz, W., Cytological comparison of Calyceraceae and Dipsacaceae with special reference to their taxonomic relationships (2000) Cytologia, 65, pp. 123-128. , http://dx.doi.org/10.1508/cytologia.65.123
  • Borchsenius, F., (2009) Fastgap, Version 1.2, , Department of Biological Sciences. Denmark: University of Aarhus, Aarhus
  • Cabrera, A.L., (1994) Regiones fitogeográficas Argentinas: Enciclopedia Argentina De Agricultura Y jardinería, p. I. , Buenos Aires: Editorial Acme S.A.C
  • Cabrera, A.L., Willink, A., (1973) Biogeografía De América Latina, , Serie de Biología 13. Washington, D.C.: Secretaría General de la Organización de los Estados Americanos
  • Carlquist, S., Devore, M., Wood anatomy of Calyceraceae with reference to ecology, habit, and systematic relationships (1998) Aliso, 17, pp. 63-76
  • Chiapella, J., Calyceraceae (1999) Flora Patagónica, pp. 492-517. , Correa, M.N. (ed.), Buenos Aires: Colección Científica del INTA
  • Chiapella, J., Calyceraceae (1999) Zuloaga, F. & Morrone, O, 2, pp. 490-495. , St. Louis: Missouri Botanical Garden Press
  • Darriba, D., Tabeada, G.L., Doallo, R., Posada, D., JModelTest 2: More models, new heuristics and parallel computing (2012) Nature, Meth, 9 (8), p. 772. , http://dx.doi.org/10.1038/nmeth.2109
  • Demesure, B., Sodzi, N., Petit, J.R., A set of universal primers for amplification of polymorphic non-coding regions of mitocho-drial and chloroplast DNA in plants (1995) Molec. Ecol, 4, pp. 129-134. , http://dx.doi.org/10.1111/j.1365-294X.1995.tb00201.x
  • Denham, S.S., Zavala-Gallo, L., Pozner, R.E., Morphology and taxonomic revision of Calycera (2014) Syst. Bot, 39, pp. 1226-1249. , http://dx.doi.org/10.1600/036364414X683877
  • Devore, M.L., (1994) Systematic Studies of Calyceraceae, , Dissertation, Ohio State University, Columbus, U.S.A
  • Devore, M.L., Zhao, Z., Jansen, R.K., Skvarla, J.J., Pollen morphology and ultrastructure of Calyceraceae (2007) Lundellia, 10, pp. 32-48
  • De Wet, J.M.J., Polyploidy and evolution in plants (1971) Taxon, 20, pp. 29-35. , http://dx.doi.org/10.2307/1218531
  • Doyle, J.J., Doyle, J.L., A rapid DNA isolation procedure for small quantities of fresh leaf tissue (1987) Phytochem. Bull. Bot. Soc. Amer, 19, pp. 11-15
  • Erbar, C., Studies on the floral development and pollen presentation in Acicarpha tribuloides with a discussion of the systematic position of the family Calyceraceae (1993) Bot. Jahrb. Syst, 115, pp. 325-350
  • Farris, J.S., Albert, V.A., Källersjö, M., Lipscomb, D., Kluge, A.G., Parsimony jackknifing outperforms neighbor-joining (1996) Cladistics, 12, pp. 99-124. , http://dx.doi.org/10.1111/j.1096-0031.1996.tb00196.x
  • Folguera, A., Ramos, V.A., Repeated eastward shifts of arc magmatism in the southern Andes: A revision to the long-term pattern of Andean uplift and magmatism (2011) J. S. Amer. Earth Sci, 32, pp. 531-546. , http://dx.doi.org/10.1016/j.jsames.2011.04.003
  • Folguera, A., Gianni, G., Sagripanti, L., Rojas Vera, E., Novara, I., Colavitto, B., Alvarez, O., Ramos, V.A., A review about the mechanisms associated with active deformation, regional uplift and subsidence in southern South America (2015) J. S. Amer. Earth Sci, 64, pp. 511-529. , http://dx.doi.org/10.1016/j.jsames.2015.07.007
  • Galvão Magenta, M.A., Pirani, J.R., Calyceraceae (2002) Flora Fanerogamica Do Estado De São Paulo, 2, pp. 67-69. , Wanderley, M.G.L., Shepherd, G.J., Giulietti, A.M., Sant’Ana Melhem, T., Bittrich, V. & Kameyama, C. (eds.), São Paulo: FAPESP, Editora HUCITEC
  • Goloboff, P., Farris, J., Nixon, K., T.N.T.: Tree analysis using new technology (2003) Cladistics, 24, pp. 774-786. , http://www.zmuc.dk/public/phylogeny, Program and documentation, available from the authors and at
  • Gruenstaeudl, M., Urtubey, E., Jansen, R.K., Samuel, R., Barfuss, M.H., Stuessy, T.F., Phylogeny of Barnadesioideae (Aster-aceae) inferred from DNA sequence data and morphology (2009) Molec. Phylogen. Evol, 51, pp. 572-587. , http://dx.doi.org/10.1016/j.ympev.2009.01.023
  • Gustafsson, M.H.G., Bremer, K., Morphology and phylogenetic interrelationships of the Asteraceae, Calyceraceae, Campanul-aceae, Goodeniaceae, and related families (Asterales) (1995) Amer. J. Bot, 82, pp. 250-265. , http://dx.doi.org/10.2307/2445532
  • Hall, T.A., BioEdit: A user-friendly biological sequence aligment editor and analysis program for Windows 95/98/NT (1999) Nucl. Acids Symp. Ser, 41, pp. 95-98
  • Hansen, H.V., Studies in the Calyceraceae with a discussion of its relationship to Compositae (1992) Nordic J. Bot, 12, pp. 63-75. , http://dx.doi.org/10.1111/j.1756-1051.1992.tb00202.x
  • Hellwig, F.H., Calyceraceae (2007) The Families and Genera of Vascular Plants, 8, pp. 19-25. , http://dx.doi.org/10.1007/978-3-540-31051-8_4, Kadereit, J.W. & Jeffrey, C, Berlin, Heidelberg: Springer
  • Hoorn, C., Mosbrugger, V., Mulch, A., Antonelli, A., Biodiversity from mountain building (2013) Nature Geosci, 6, p. 154. , http://dx.doi.org/10.1038/ngeo1742
  • Katinas, L., Hernandez, P.M., Arambarri, A.M., Funk, V.A., The origin of the bifurcating style in Asteraceae (Compositae) (2016) Ann. Bot. (Oxford), 117, pp. 1009-1021. , http://dx.doi.org/10.1093/aob/mcw033
  • Kim, K.J., Choi, K.S., Jansen, R.K., Two chloroplast DNA in-versions originated simultaneously during the early evolution of the sunflower family (Asteraceae) (2005) Molec. Biol. Evol, 22, pp. 1783-1792. , http://dx.doi.org/10.1093/molbev/msi174
  • Leins, P., Erbar, C., (2010) Flower and Fruit: Morphology, Ontogeny, Phylogeny, Function and Ecology, , Stuttgart: Schweizerbart Science Publishers
  • Luebert, F., Weigend, M., Phylogenetic insights into Andean plant diversification (2014) Frontiers Ecol. Evol, 2, p. 27. , http://dx.doi.org/10.3389/fevo.2014.00027
  • Lundberg, J., Asteraceae and relationships within Asterlaes (2009) Systematics, Evolution, and Biogeography of Compositae, pp. 157-169. , Funk, V.A., Susanna, A., Stuessy, T.F. & Bayer, R.J, Vienna: International Association for Plant Taxonomy (IAPT)
  • Lundberg, J., Bremer, K., A Phylogenetic study of the order Asterales using one morphological and three molecular data sets (2003) Int. J. Pl. Sci, 164, pp. 553-578. , http://dx.doi.org/10.1086/374829
  • Miller, M.A., Pfeiffer, W., Schwartz, T., Creating the CIPRES Science Gateway for inference of large phylogenetic trees (2010) Proceedings of the Gateway Computing Environments Workshop (GCE), pp. 45-52. , http://dx.doi.org/10.1109/GCE.2010.5676129, New Orleans, Louisiana, 14 Nov 2010. Piscataway: IEEE
  • Moore, D.M., Further records for the vascular flora of the Falkland Islands (1967) Bot. Not, 120, pp. 17-25
  • Moore, D.M., The flora of the Fuego-Patagonia Cordillera: Its origins and affinities (1983) Revista Chilena Hist. Nat, 56, pp. 123-136
  • Palazzesi, L., Barreda, V., Tellería, M.C., First fossil record of Calyceraceae (Asterales): Pollen evidence from southern South America (2010) Rev. Palaeobot. Palynol, 158, pp. 236-239. , http://dx.doi.org/10.1016/j.revpalbo.2009.09.003
  • Panero, J.L., Crozier, B.S., Macroevolutionary dynamics in the early diversification of Asteraceae (2016) Molec. Phylogen. Evol, 99, pp. 116-132. , http://dx.doi.org/10.1016/j.ympev.2016.03.007
  • Pirie, M.D., Doyle, J.A., Dating clades with fossils and molecules: The case of Annonaceae (2012) Bot. J. Linn. Soc, 169, pp. 84-116. , http://dx.doi.org/10.1111/j.1095-8339.2012.01234.x
  • Pontiroli, A., Flora Argentina: Calyceraceae (1963) Revista Mus. La Plata, 9, pp. 175-241
  • Pozner, R., Zanotti, C., Johnson, L.A., Evolutionary origin of the Asteraceae capitulum: Insights from Calyceraceae (2012) Amer. J. Bot, 99, pp. 1-13. , http://dx.doi.org/10.3732/ajb.1100256
  • Rahn, K., Chromosome numbers in some South American angi-sperms (1960) Bot. Tidsskr, 56, pp. 117-127
  • Reitz, R., (1988) Flora Ilustrada Catarinense, I Parte, as Plantas, Fasc, , Calic: Caliceráceas. Itajaí: Herbário “Barbosa Rodrigues”
  • Rodrígues, C., Ormond, W.T., Bezerra Pinheiro, M.C., Contribucao a citologia de Acicarpha spathulata R. Brown (Calyceraceae) (1977) Bol. Mus. Nac. Rio De Janeiro, 45, pp. 1-6
  • Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Huelsen-Beck, J.P., MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space (2012) Syst. Biol, 61, pp. 539-542. , http://doi.org/10.1093/sysbio/sys029
  • Sang, T., Crawford, D.J., Stuessy, T.F., Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae) (1997) Amer. J. Bot, 84, pp. 1120-1136
  • Sede, M.S., Dürnhöfer, S.I., Morello, S., Zapata, F., Phylogenetics of Escallonia (Escalloniaceae) based on plastid DNA sequence data (2013) Bot. J. Linn. Soc, 173, pp. 442-451. , http://dx.doi.org/10.1111/boj.12091
  • Shaw, J., Lickey, E.B., Beck, J.T., Farmer, S.B., Liu, W., Miller, J., Siripun, K.C., Small, R.L., The tortoise and the hare II: Relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis (2005) Amer. J. Bot, 92, pp. 142-166. , http://dx.doi.org/10.3732/ajb.92.1.142
  • Simmons, M.P., Ochoterena, H., Gaps and characters in sequence-based phylogenetic analyses (2000) Syst. Biol, 49, pp. 369-381. , http://dx.doi.org/10.1093/sysbio/49.2.369
  • Stuessy, T.F., Sang, T., Devore, M.L., Phylogeny and biogeography of the subfamily Barnadesoideae with implications for early evolution of the Compositae (1996) Compositae: Systematics. Richmond, pp. 463-490. , Hind, D.J.H. & Beentje, H.J. (eds.), Royal Botanical Gardens, Kew
  • Sugiura, T., A list of chromosome numbers in angiospermous plants. II (1936) Proc. Imp. Acad. Japan, 12, pp. 144-146
  • Tate, J.A., Simpson, B.B., Paraphyly of Tarasa (Malvaceae) and diverse origins of the polyploid species (2003) Syst. Bot, 28, pp. 723-737. , http://dx.doi.org/10.1043/02-64.1
  • Troll, W., (1969) Die Infloreszenzen: Typologie Und Stellung Im Aufbau Des Vegetationskörpers, 2 (1). , Jena: Fischer
  • Turner, B.L., IOPB chromosome number reports LXII (1978) Taxon, 27, pp. 519-535. , [Report]. P. 533 in: Löve, Á
  • White, T.J., Bruns, T., Lee, S., Taylor, J., Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics (1990) PCR Protocols: A Guide to Methods and Applications, pp. 315-322. , Innis, M.A., Gelfand, D.H., Sninsky, J.J. & White, T.J. (eds.), San Diego: Academic Press
  • Zanotti, C.A., Pozner, R.E., Valor diagnóstico de la estructura del fruto de Boopis y Nastanthus (Calyceraceae) (2007) Bol. Soc. Argent. Bot, 42, p. 142
  • Zanotti, C.A., Pozner, R.E., Calyceraceae (2008) Catálogo De Las Plantas Vasculares Del Cono Sur (Argentina, Sur De Brasil, Chile, Paraguay Y Uruguay), pp. 1844-1853. , Zuloaga, F.O., Morrone, O. & Belgrano, M.J. (eds.), Saint Louis: Missouri Botanical Garden Press
  • Zavala-Gallo, L.M., (2013) Evaluación De Los límites genéricos Y evolución morfológica De Las Calyceraceae Sobre La Base De Un análisis filogenético Combinado (molecular-morfológico), , Dissertation, Universidad Nacional de La Plata, Buenos Aires, Argentina
  • Zavala-Gallo, L., Denham, S., Pozner, R., Revision of Nastanthus (Calyceraceae) (2010) Gayana Bot, 67, pp. 158-175. , http://dx.doi.org/10.4067/S0717-66432010000200002

Citas:

---------- APA ----------
Denham, S.S., Zavala-Gallo, L., Johnson, L.A. & Pozner, R.E. (2016) . Insights into the phylogeny and evolutionary history of Calyceraceae. Taxon, 65(6), 1328-1344.
http://dx.doi.org/10.12705/656.7
---------- CHICAGO ----------
Denham, S.S., Zavala-Gallo, L., Johnson, L.A., Pozner, R.E. "Insights into the phylogeny and evolutionary history of Calyceraceae" . Taxon 65, no. 6 (2016) : 1328-1344.
http://dx.doi.org/10.12705/656.7
---------- MLA ----------
Denham, S.S., Zavala-Gallo, L., Johnson, L.A., Pozner, R.E. "Insights into the phylogeny and evolutionary history of Calyceraceae" . Taxon, vol. 65, no. 6, 2016, pp. 1328-1344.
http://dx.doi.org/10.12705/656.7
---------- VANCOUVER ----------
Denham, S.S., Zavala-Gallo, L., Johnson, L.A., Pozner, R.E. Insights into the phylogeny and evolutionary history of Calyceraceae. Taxon. 2016;65(6):1328-1344.
http://dx.doi.org/10.12705/656.7