Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Reactive oxygen species (ROS), such as free radicals and peroxides, are environmental trace pollutants potentially associated with asthma and airways inflammation. These compounds are often not detected in indoor air due to sampling and analytical limitations. This study developed and validated an experimental method to sample, identify and quantify ROS in indoor air using fluorescent probes. Tests were carried out simultaneously using three different probes: 2′,7′-dichlorofluorescin (DCFH) to detect a broad range of ROS, Amplex ultra Red® (AuR) to detect peroxides, and terephthalic acid (TPA) to detect hydroxyl radicals (HO•). For each test, air samples were collected using two impingers in series kept in an ice bath, containing each 10 mL of 50 mM phosphate buffer at pH 7.2. In tests with TPA, that probe was also added to the buffer prior to sampling; in the other two tests, probes and additional reactants were added immediately after sampling. The concentration of fluorescent byproducts was determined fluorometrically. Calibration curves were developed by reacting DCFH and AuR with known amounts of H2O2, and using known amounts of 2-hydroxyterephthalic acid (HTPA) for TPA. Low detection limits (9-13 nM) and quantification limits (18-22 nM) were determined for all three probes, which presented a linear response in the range 10-500 nM for AuR and TPA, and 100-2000 nM for DCFH. High collection efficiency (CE) and recovery efficiency (RE) were observed for DCFH (CE=RE=100%) and AuR (CE=100%; RE=73%) by sampling from a laboratory-developed gas phase H2O2 generator. Interference of co-occurring ozone was evaluated and quantified for the three probes by sampling from the outlet of an ozone generator. The method was demonstrated by sampling air emitted by two portable air cleaners: a strong ozone generator (AC1) and a plasma generator (AC2). High ozone levels emitted by AC1 did not allow for simultaneous determination of ROS levels due to high background levels associated with ozone decomposition in the buffer. However, emitted ROS were quantified at the outlet of AC2 using two of the three probes. With AuR, the concentration of peroxides in air emitted by the air cleaner was 300 ppt of H2O2 equivalents. With TPA, the HO• concentration was 47 ppt. This method is best suited to quantify ROS in the presence of low ozone levels. © 2015, Elsevier B.V. All rights reserved.

Registro:

Documento: Artículo
Título:Detection and quantification of reactive oxygen species (ROS) in indoor air
Autor:Montesinos, V.N.; Sleiman, M.; Cohn, S.; Litter, M.I.; Destaillats, H.
Filiación:Comisión Nacional de Energía Atómica, Avenida Gral. Paz 1499, San Martín, Provincia de Buenos Aires 1650, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas, Avenida Rivadavia 1917, Ciudad Autónoma de Buenos Aires, 1033, Argentina
Universidad de Buenos Aires, FCEN, Ciudad Universitaria Pabellón II, Ciudad Autónoma de Buenos Aires, 1428, Argentina
Lawrence Berkeley National Laboratory, Indoor Environment Group, MS 70-108B, 1 Cyclotron Road, Berkeley, CA, United States
Clermont Université, ENSCCF, Institut de Chimie de Clermont-Ferrand, BP 10448, Clermont-Ferrand, F-63000, France
CNRS, UMR 6296, ICCF, BP 80026, Aubière, F-63177, France
Universidad de General San Martín, Instituto de Investigación e Ingeniería Ambiental, Peatonal Belgrano 3563, San Martín, Pcia. Buenos Aires 1650, Argentina
Palabras clave:Hydrogen peroxide; Hydroxyl radical; Plasma air cleaner; Reactive oxygen species (ROS); Air quality; Byproducts; Efficiency; Fluorescence; Free radicals; Hydrogen peroxide; Indoor air pollution; Oxidation; Ozone; Peroxides; Probes; Detection and quantifications; Experimental methods; High collection efficiency; Hydroxyl radicals; Low detection limit; Quantification limit; Reactive oxygen species; Simultaneous determinations; Air cleaners; 2',7'-dichlorofluorescein; 2-hydroxyterephthalic acid; fluorescein derivative; fluorescent dye; hydrogen peroxide; hydroxyl radical; ozone; phthalic acid derivative; reactive oxygen metabolite; analysis; chemistry; indoor air pollution; limit of detection; Air Pollution, Indoor; Fluoresceins; Fluorescent Dyes; Hydrogen Peroxide; Hydroxyl Radical; Limit of Detection; Ozone; Phthalic Acids; Reactive Oxygen Species
Año:2015
Volumen:138
Página de inicio:20
Página de fin:27
DOI: http://dx.doi.org/10.1016/j.talanta.2015.02.015
Título revista:Talanta
Título revista abreviado:Talanta
ISSN:00399140
CODEN:TLNTA
CAS:hydrogen peroxide, 7722-84-1; hydroxyl radical, 3352-57-6; ozone, 10028-15-6; 2',7'-dichlorofluorescein; 2-hydroxyterephthalic acid; Fluoresceins; Fluorescent Dyes; Hydrogen Peroxide; Hydroxyl Radical; Ozone; Phthalic Acids; Reactive Oxygen Species
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00399140_v138_n_p20_Montesinos

Referencias:

  • Weschler, C.J., (2006) Environ. Health Perspect., 114, pp. 1489-1496
  • Weschler, C.J., Wells, J.R., Poppendieck, D., Hubbard, H., Pearce, T.A., (2006) Environ. Health Perspect., 114 (3), pp. 442-446
  • Arellanes, C., Paulson, S.E., Fine, P.M., Sioutas, C., (2006) Environ. Sci. Technol., 40, pp. 4859-4866
  • Hasson, A.S., Paulson, S.E., (2003) J. Aerosol Sci., 34, pp. 459-468
  • Hong, S.B., Kim, G.S., Kang, C.H., Lee, J.H., (2008) Environ. Monit. Assess., 147, pp. 23-34
  • Linxiang, L., Abe, Y., Nagasawa, Y., Kudo, R., Usui, N., Imai, K., Mashino, T., Miyata, N., (2004) Biomed. Chromatogr., 18, pp. 470-474
  • Sleiman, M., Destaillats, H., Gundel, L.A., (2013) Talanta, 116, pp. 1033-1039
  • Venkatachari, P., Hopke, P.K., (2008) Aerosol Sci. Technol., 42, pp. 629-635
  • Wang, Y., Kim, H., Paulson, S.E., (2011) Atmos. Environ., 45, pp. 3149-3156
  • Zhao, J., Hopke, P.K., (2012) Aerosol Sci. Technol., 46, pp. 191-197
  • Zhou, M., Diwu, Z., Panchuk-Voloshina, N., Haugland, R.P., (1997) Anal. Biochem., 253, pp. 162-168
  • Finlayson-Pitts, B.J., Pitts, J.N., (2000) Chemistry of the Upper and Lower Atmosphere, p. 969. , Academic Press San Diego, CA
  • Shimizu, K., Blajan, M., Kuwabara, T., (2011) IEEE Trans. Ind. Appl., 47, pp. 2351-2357
  • Zhang, Y., Mo, J., Li, Y., Sundell, J., Wargocki, P., Zhang, J., Little, J.C., Sun, Y., (2011) Atmos. Environ., 45, pp. 4329-4343
  • Thevenet, F., Guaitella, O., Puzenat, E., Herrmann, J.-M., Rousseau, A., Guillard, C., (2007) Catal. Today, 122, pp. 186-194
  • Park, J.H., Byeon, J.H., Yoon, K.Y., Hwang, J., (2008) Indoor Air, 18, pp. 44-50
  • Van Durme, J., Dewulf, J., Sysmans, W., Leys, C., Van Langenhove, H., (2007) Chemosphere, 68, pp. 1821-1829
  • Liang, Y.D., Wu, Y., Sun, K., Chen, Q., Shen, F.X., Zhang, J., Yao, M.S., Fang, J., (2012) Environ. Sci. Technol., 46, pp. 3360-3368
  • Nishikawa, H., Nojima, H., (2003) Sharp Tech. J., 86, pp. 10-15
  • Sidheswaran, M.A., Destaillats, H., Sullivan, D.P., Larsen, J., Fisk, W.J., (2011) Appl. Catal. B - Environ., 107, pp. 34-41
  • Yu, J.G., Li, X.Y., Xu, Z.H., Xiao, W., (2013) Environ. Sci. Technol., 47, pp. 9928-9933
  • Damit, B., Wu, C.Y., Yao, M.S., (2013) J. Aerosol Sci., 65, pp. 88-100
  • Jung, J.H., Lee, J.E., Kim, S.S., (2009) Sci. Total Environ., 407, pp. 4723-4730
  • Jung, J.H., Lee, J.E., Kim, S.S., Bae, G.N., (2010) J. Aerosol Sci., 41, pp. 602-610
  • Cheng, H.H., Hsieh, C.C., Tsai, C.H., (2012) Aerosol Air Qual. Res., 12, pp. 409-419
  • Ji, J.H., Bae, G.N., Yun, S.H., Jung, J.H., Noh, H.S., Kim, S.S., (2007) Aerosol Sci. Technol., 41, pp. 786-793
  • Ishibashi, K.-I., Fujishima, A., Watanabe, T., Hashimoto, K., (2000) Electrochem. Commun., 2, pp. 207-210
  • Huang, D., Chen, Z., (2010) J. Environ. Sci., 22 (4), pp. 570-574
  • Destaillats, H., Colussi, A.J., Joseph, J.M., Hoffmann, M.R., (2000) J. Phys. Chem. A, 104, pp. 8930-8935
  • Balasubramanian, R., Husain, L., (1997) J. Geophys. Res., 102 (D17), p. 21
  • Li, T.H., Turpin, B.J., Shields, H.C., Weschler, C.J., (2002) Environ. Sci. Technol., 36, pp. 3295-3302
  • Dusanter, S., Vimal, D., Stevens, P.S., Volkamer, R., Molina, L.T., (2009) Atmos. Chem. Phys., 9, pp. 1665-1685
  • Singer, B.C., Coleman, B.K., Destaillats, H., Hodgson, A.T., Lunden, M.M., Weschler, C.J., Nazaroff, W.W., (2006) Atmos. Environ., 40, pp. 6696-6710
  • Weschler, C.J., Shields, H.C., (1997) Environ. Sci. Technol., 31, pp. 3719-3722
  • Gligorovski, S., Weschler, C.J., (2013) Environ. Sci. Technol., 47, pp. 13905-13906
  • Destaillats, H., Lunden, M.M., Singer, B.C., Coleman, B.K., Hodgson, A.T., Weschler, C.J., Nazaroff, W.W., (2006) Environ. Sci. Technol., 40, pp. 4421-4428

Citas:

---------- APA ----------
Montesinos, V.N., Sleiman, M., Cohn, S., Litter, M.I. & Destaillats, H. (2015) . Detection and quantification of reactive oxygen species (ROS) in indoor air. Talanta, 138, 20-27.
http://dx.doi.org/10.1016/j.talanta.2015.02.015
---------- CHICAGO ----------
Montesinos, V.N., Sleiman, M., Cohn, S., Litter, M.I., Destaillats, H. "Detection and quantification of reactive oxygen species (ROS) in indoor air" . Talanta 138 (2015) : 20-27.
http://dx.doi.org/10.1016/j.talanta.2015.02.015
---------- MLA ----------
Montesinos, V.N., Sleiman, M., Cohn, S., Litter, M.I., Destaillats, H. "Detection and quantification of reactive oxygen species (ROS) in indoor air" . Talanta, vol. 138, 2015, pp. 20-27.
http://dx.doi.org/10.1016/j.talanta.2015.02.015
---------- VANCOUVER ----------
Montesinos, V.N., Sleiman, M., Cohn, S., Litter, M.I., Destaillats, H. Detection and quantification of reactive oxygen species (ROS) in indoor air. Talanta. 2015;138:20-27.
http://dx.doi.org/10.1016/j.talanta.2015.02.015