Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

A phenomenological model based on a linear relationship between the magnetic coercivity field and the reciprocal of the grain diameter is applied to explain the anhysteretic remanent magnetization (ARM) imparted to artificial samples with different concentrations of a very well characterized magnetite powder. By analyses of scanning electron microscopy images, the spherically shaped single domain synthetic magnetite is found to follow a lognormal grain size distribution with ~86 nm of mean diameter. The proposed model, fitted to ARM measurements up to a peak alternating field of 100 mT, yields a very good agreement. The coercivity behaviour predicted by micromagnetism theory disagrees with the experimental results of this work. A likely explanation for the discrepancy is that the magnetite particles, which consist of a mixture of grains in coherent rotation and curling modes, produce similar observations as domain processes. © 2018, Institute of Geophysics of the ASCR, v.v.i.

Registro:

Documento: Artículo
Título:Anhysteretic remanent magnetization: model of grain size distribution of spherical magnetite grains
Autor:Vasquez, C.A.; Sapienza, F.F.; Somacal, A.; Fazzito, S.Y.
Filiación:Universidad de Buenos Aires, Ciclo Básico Común, Ramos Mejía 841, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
CONICET, IGEBA, Fac. Cs. Exactas y Naturales, Dto. Geología, Pab. 2, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
Universidad de Buenos Aires, FCEN, Dto. de Física, Pab. 1, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
Palabras clave:ARM; magnetite; micromagnetism; SEM; thermomagnetic curves; concentration (composition); geomagnetism; grain size; magnetite; remanent magnetization; sampling; scanning electron microscopy; size distribution
Año:2018
Volumen:62
Número:2
Página de inicio:339
Página de fin:351
DOI: http://dx.doi.org/10.1007/s11200-017-1233-1
Título revista:Studia Geophysica et Geodaetica
Título revista abreviado:Stud. Geophys. Geod.
ISSN:00393169
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00393169_v62_n2_p339_Vasquez

Referencias:

  • Aharoni, A., Micromagnetics: past, present and future (2001) Physica B, 306, pp. 1-9
  • Almeida, T.P., Muxworthy, A.R., Kovács, A., Williams, W., Dunin-Borkowski, R.E., Observation of thermally-induced magnetic relaxation in a magnetic grain using off-axis electron holography (2017) J. Phys. Conf. Ser., 902, p. 012001
  • Bertotti, G., (1998) Hysteresis in Magnetism: For Physicists, Materials Scientists, and Engineers
  • Brown, W.F., Jr., (1963) Micromagnetics
  • Butler, R.F., (1992) Paleomagnetism: Magnetic Domains to Geologic Terranes
  • Chantrell, R.W., Popplewell, J., Charles, S.W., The effect of a particle size distribution on the coercivity and remanence of a fine particle system (1977) Physica B+C, 86-88, pp. 1421-1422
  • Dunlop, D.J., West, G.F., An experimental evaluation of single domain theories (1969) Rev. Geophys., 7, pp. 709-757
  • Dunlop, D.J., Özdemir, (1997) Rock Magnetism: Fundamentals and Frontiers
  • Gehring, A.U., Fischer, H., Louvel, M., Kunze, K., Weidler, P.G., High temperature stability of natural maghemite: A magnetic and spectroscopic study (2009) Geophys. J. Int., 179, pp. 1361-1371
  • Eick, P.M., Schlinger, C.M., The use of magnetic susceptibility and its frequency dependence for delineation of a magnetic stratigraphy in ash-flow tuffs (1990) Geophys. Res. Lett., 17, pp. 783-786
  • Egli, R., Lowrie, W., Anhysteretic remanent magnetization of fine magnetic particles (2002) J. Geophys. Res.-Solid Earth, 107, p. 2209
  • Jackson, M., Magnetic anisotropy of the Trenton limestone revisited (1990) Geophys. Res. Lett., 17, pp. 1121-1124
  • Jackson, M., Anisotropy of magnetic remanence: A brief review of mineralogical sources, physical origins, and geological applications, and comparison with susceptibility anisotropy (1991) Pure Appl. Geophys., 136, pp. 1-28
  • Jackson, M., Craddock, J.P., Ballard, M., Van der Voo, R., McCabe, C., Anhysteretic remanent magnetic anisotropy and calcite strains in Devonian carbonates from the Appalachian Plateau, New York (1989) Tectonophysics, 161, pp. 43-53
  • Liu, Q., Deng, C., Yu, Y., Torrent, J., Jackson, M., Banerjee, S., Zhu, R., Temperature dependence of magnetic susceptibility in an argon environment: implications for pedogenesis of Chinese loess/palaeosols (2005) Geophys. J. Int., 161, pp. 102-112
  • Liu, Q., Torrent, J., Maher, B.A., Yu, Y., Deng, C., Zhu, R., Zhao, X., Quantifying grain size distribution of pedogenic magnetic particles in Chinese loess and its significance for pedogenesis (2005) J. Geophys. Res.-Solid Earth, 110, p. B11102
  • Maurain, C., Étude et comparaison des procédés de réduction de l’hystérésis magnétique (1904) J. Phys. Theor. Appl., 3, pp. 417-434
  • McCabe, C., Jackson, M., Ellwood, B.B., Magnetic anisotropy in the Trenton limestone: results of a new technique, anisotropy of anhysteretic susceptibility (1985) Geophys. Res. Lett., 12, pp. 333-336
  • McNab, T.K., Fox, R.A., Boyle, A.J.F., Some magnetic properties of magnetite (Fe3O4) microcrystals (1968) J. Appl. Physics, 39, pp. 5703-5711
  • Muxworthy, A.R., Dunlop, D.J., Williams, W., High-temperature magnetic stability of small magnetite particles (2003) J. Geophys. Res.-Solid Earth, 108, p. 2281
  • Muxworthy, A.R., Williams, W., Critical single-domain/multidomain grain sizes in noninteracting and interacting elongated magnetite particles: Implications for magnetosomes (2006) J. Geophys. Res.-Solid Earth, 111, p. B12S12
  • Nagata, T., (1961) Rock Magnetism
  • Néel, L., Influence of fluctuations of the molecular field on the magnetic properties of bodies (1932) Ann. Phys., 17, pp. 5-105
  • Néel, L., Proprietes magnetiques des ferrites-ferrimagnetisme et antiferromagnetisme (1948) Ann. Phys., 3, pp. 137-198
  • Néel, L., Aimantation a saturation de certains ferrites (1950) Comptes Rendus Hebdomadaires des Seances de L’Academie des Sciences, 230, pp. 190-192
  • Néel, L., Effet de la dilatation thermique sur la valeur de la constante de curie des ferrites (1951) J. Phys. Radium, 12, pp. 258-259
  • O’Grady, K., Bradbury, A., Particle size analysis in ferrofluids (1983) J. Magn. Magn. Mater., 39, pp. 91-94
  • Petrova, G.N., Magnitnaya stabil'nost' gornykh porod (Magnetic stability of rocks) (1957) Izvest. Akad. Nauk SSSR Ser. Geofiz., 1, pp. 52-61
  • Petrova, G.N., On magnetic stability of rocks (1959) Ann. Géophys., 15, pp. 60-66
  • Shapiro, W.W., Wilk, M.B., An analysis of variance test for normality (complete samples) (1965) Biometrika, 52, pp. 591-611
  • Schmidbauer, E., Schembera, N., Magnetic hysteresis properties and anhysteretic remanent magnetization of spherical Fe3O4 particles in the grain size range 60-160 nm (1987) Phys. Earth Planet. Inter., 46, pp. 77-83
  • Smart, J.S., The Néel theory of ferrimagnetism (1955) Am. J. Phys., 23, pp. 356-370
  • Stoner, E.C., Wohlfarth, E.P., A mechanism of magnetic hysteresis in heterogeneous alloys (1948) Phil. Trans. R. Soc. Lond. A, 240, pp. 599-642
  • Tannous, C., Gieraltowski, J., The Stoner-Wohlfarth model of ferromagnetism (2008) Eur. J. Phys., 29, pp. 475-487
  • Tauxe, L., Bertram, H.N., Seberino, C., Physical interpretation of hysteresis loops: Micromagnetic modeling of fine particle magnetite (2002) Geochem. Geophys. Geosyst., 3, p. 1055
  • Tauxe, L., Banerjee, S.K., Butler, R.F., Van der Voo, R., (2016) Essentials of Paleomagnetism
  • Thellier, E., Rimbert, F., Sur l’analyse d’aimantations fossiles par l’'action de champs magnetiques alternatifs (1954) C. R. Acad. Sci. Paris, 239, pp. 1399-1401
  • Thellier, E., Rimbert, F., Sur l’utilisation, en paleomagnétisme, de la désaimantation por champs alternatifs (1955) C. R. Acad. Sci. Paris, 240, pp. 1404-1406
  • Vasquez, C.A., Orgeira, M.J., Sinito, A.M., Origin of superparamagnetic particles in Argiudolls developed on loess, Buenos Aires (Argentina) (2009) Environ. Geol., 56, pp. 1653-1661
  • Walton, D., A theory of anhysteretic remanent magnetization of single-domain grains (1990) J. Magn. Magn. Mater., 87, pp. 369-374
  • Worm, H.-U., On the superparamagnetic-stable single domain transition for magnetite, and frequency dependence of susceptibility (1998) Geophys. J. Int., 133, pp. 201-206
  • Worm, H.-U., Jackson, M., The superparamagnetism of Yucca Mountain Tuff (1999) J. Geophys. Res.-Solid Earth, 104, pp. 25415-25425

Citas:

---------- APA ----------
Vasquez, C.A., Sapienza, F.F., Somacal, A. & Fazzito, S.Y. (2018) . Anhysteretic remanent magnetization: model of grain size distribution of spherical magnetite grains. Studia Geophysica et Geodaetica, 62(2), 339-351.
http://dx.doi.org/10.1007/s11200-017-1233-1
---------- CHICAGO ----------
Vasquez, C.A., Sapienza, F.F., Somacal, A., Fazzito, S.Y. "Anhysteretic remanent magnetization: model of grain size distribution of spherical magnetite grains" . Studia Geophysica et Geodaetica 62, no. 2 (2018) : 339-351.
http://dx.doi.org/10.1007/s11200-017-1233-1
---------- MLA ----------
Vasquez, C.A., Sapienza, F.F., Somacal, A., Fazzito, S.Y. "Anhysteretic remanent magnetization: model of grain size distribution of spherical magnetite grains" . Studia Geophysica et Geodaetica, vol. 62, no. 2, 2018, pp. 339-351.
http://dx.doi.org/10.1007/s11200-017-1233-1
---------- VANCOUVER ----------
Vasquez, C.A., Sapienza, F.F., Somacal, A., Fazzito, S.Y. Anhysteretic remanent magnetization: model of grain size distribution of spherical magnetite grains. Stud. Geophys. Geod. 2018;62(2):339-351.
http://dx.doi.org/10.1007/s11200-017-1233-1