Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Inter-monthly to inter-decadal global variability of lower stratosphere temperature (LST) is studied in order to improve current knowledge on its variability and trends, as well as natural and anthropogenic influences upon it. Principal Component Analysis (PCA) with S-mode Varimax rotated PCA were used. The first seven components, which explain 70% of variance make it possible to determine homogeneous LST behaviour zones with little overlap between areas, and practically no unclassified areas. Composite time series, referred to as reference series, in the core of the subregions defined by each of the PCs, were calculated in order to obtain the temporal patterns. The equatorial-tropical zone and the subtropical area display warmings caused by the eruptions of El Chichon and Mt. Pinatubo volcanoes as well as the strong influence of the Quasi-Biennial Oscillation (QBO) which leads to equatorial warming (cooling) in the west (east) phase and cooling (warming) in subtropical latitudes. Only low latitudes show some kind of global teleconnection between hemispheres. Significant correlation with several ocean/atmosphere index time-series like ENSO, Antarctic and Arctic Oscillations (AAO, AO), Arctic Circumpolar Vortex was detected over latitudinally separate regions. Antarctic and Arctic ozone hole values were contrasted with warming and cooling features registered in mid and high latitudes in both hemispheres. The LST reference series exhibit a negative trend, commonly attributed to the increase in greenhouse gases that lead to a warming of the troposphere and a cooling of the stratosphere, in all sub regions. The highest cooling rate of -0.65°C/decade is detected in the Gobi desert, and the lowest values of -0.1 °C/decade over the NE of Canada and Greenland which indicates the great longitudinal variability that the LST trends may present. The difference with other authors is mainly due to the fact that results are based either on latitudinal averages or radiosonde data. © StudiaGeo s.r.o. 2005.

Registro:

Documento: Artículo
Título:Temporal variability of lower stratosphere temperature
Autor:Castañeda, M.E.; Compagnucci, R.H.
Filiación:Departamento de Ciencias de la Atmósfera y los Océanos, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires/CONICET, Pab. 2. Piso II, C1428EHA Buenos Aires, Argentina
Palabras clave:Global; MSU; Northern Hemisphere; Principal component analysis; QBO; Southern Hemisphere; Stratosphere; Temperature; anthropogenic effect; stratosphere; temperature
Año:2005
Volumen:49
Número:4
Página de inicio:573
Página de fin:596
DOI: http://dx.doi.org/10.1007/s11200-005-0028-y
Título revista:Studia Geophysica et Geodaetica
Título revista abreviado:Stud. Geophys. Geod.
ISSN:00393169
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00393169_v49_n4_p573_Castaneda

Referencias:

  • Angell, J.K., Comparison of stratospheric warming following Agung, El Chichón, and Pinatubo volcanic eruptions (1993) Geophys. Res. Lett., 20, pp. 715-718
  • Angell, J.K., Stratospheric warming due to Agung, El Chichón, and Pinatubo taking into account the quasi-biennial oscillation (1997) J. Geophys. Res., 102, pp. 9479-9485. , 10.1029/96JD03588
  • Angell, J.K., Global., hemispheric and zonal temperature deviations derived from radiosonde records (2000) Trends Online: A Compendium of Data on Global Change, , Carbon Dioxide Information Analysis Center Oak Ridge National Laboratory, U.S. Department of Energy Oak Ridge, Tennessee, U.S.A
  • Angell, J.K., Effect of exclusion of anomalous tropical stations on temperature trends from a 63-station radiosonde network, and comparison with other analyses (2003) J. Climate, 16, pp. 2288-2295. , 10.1175/2763.1
  • Angell, J.K., Flynn, L.E., Gelman, M.E., Hofmann, D., Long, C.S., Miller, A.J., Nagatani, R.M., Zhou, S., Southern Hemisphere Winter Summary (2003), http://www.cpc.ncep.noaa.gov; Araneo, D., Compagnucci, R.H., Removal of systematic biases in S-Mode Principal Components arising from unequal grid spacing (2004) J. Climate, 17, pp. 394-400. , 10.1175/1520-0442(2004)017<0394:ROSBIS>2.0.CO;2
  • Baldwin, M.P., Gray, L.J., Dunkerton, T.J., Hamilton, K., Haynes, P.H., Randel, W.J., Holton, J.R., Takahashi, M., The quasi-biennial oscillation (2001) Rev. Geophys., 39, pp. 179-229. , 10.1029/1999RG000073
  • Balachandran, N.K., Rind, D., Modeling the effects of UV variability and the QBO on the troposphere/ stratosphere system. Part I: The middle atmosphere (1995) J. Climate, 8, pp. 2058-2079. , 10.1175/1520-0442(1995)008<2058:MTEOUV>2.0.CO;2
  • Chanin, M.-L., Ramaswamy, V., Trends in stratospheric temperatures (1999) Scientific Assessment of Ozone Depletion: 1998, pp. 5.1-5.59. , WMO Global Ozone Research and Monitoring Project Report No. 44
  • Compagnucci, R.H., Salles, M.A., Canziani, P.O., The spatial and temporal behaviour of the lower stratospheric temperature over the Southern Hemisphere: The MSU view. Part I: Data, methodology and temporal behaviour (2001) Int. J. Climatol., 21, pp. 419-437. , 10.1002/joc.606
  • Castanheira, J.M., Graf, H.F., North Pacific-North Atlantic relationships under stratospheric control? (2003) J. Geophys. Res., 108, p. 14036. , 10.1029/2002JD002754
  • Christy, J.R., Spencer, R.W., Braswell, W.D., How accurate are satellite "thermometers" (1997) Nature, 389, pp. 342-343. , 10.1038/38640
  • Halpert, M.S., Bell, G.D., Climate assessment for 1996 (1997) Bull. Am. Meteorol. Soc., 78, pp. S1-S49. , 10.1175/1520-0477(1997)078<1038:CAF>2.0.CO;2
  • Harman, H.H., (1976) Modern Factor Analysis, , Third Edition Chicago University Press Chicago, USA
  • Huth, R., Canziani, P.O., Classification of hemispheric monthly mean stratospheric potential vorticity fields (2003) Ann. Geophys., 21, pp. 805-817
  • (2001) The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, , IPCC, J.T. Houghton Y. Ding D.J. Griggs M. Noguer P.J. van der Linden and D. Xiaosu (Eds.), Cambridge University Press Cambridge, UK
  • Jenkins, G.M., Watts, D.G., (1968) Spectral Analysis and Its Applications, , Holden-Day Press. Illinois, USA
  • Jolliffe, I.T., (1986) Principal Component Analysis, , Springer-Verlag, New York, USA
  • Kanzawa, H., Kawaguchi, S., Large stratospheric sudden warming in Antarctic late winter and shallow ozone hole in 1988 (1990) Geophys. Res. Lett., 17, pp. 77-80
  • Kruger, K., Naujokat, B., Labitzke, K., The unusual midwinter warming in the Southern Hemisphere stratosphere 2002: A comparison to Northern Hemisphere phenomena (2005) J. Atmos. Sci., 62, pp. 603-613. , 10.1175/JAS-3316.1
  • Labitzke, K.G., Naujokat, B., On the variability and trends of the temperature in the middle atmosphere (1983) Beitragezur Physik Der Atmosphare, 56, pp. 495-507
  • Labitzke, K.G., van Loon, H., (1999) The Stratosphere: Phenomena, History and Relevance, , Springer-Verlag Berlin, Germany
  • Lanzante, J., Klein, S.A., Seidel, D.J., Temporal homogenization of monthly radiosonde temperature data. Part II: Trends, sensitivities, and MSU comparison (2003) J. Climate, 16, pp. 241-262. , 10.1175/1520-0442(2003)016<0241:THOMRT>2.0.CO;2
  • Mechoso, C.R., O'Neill, A., Pope, V.D., Farrara, J.D., A study of the stratospheric final warming of 1982 in the southern hemisphere (1988) Q. J. R. Meteorol. Soc., 114, pp. 1365-1384. , 10.1256/smsqj.48401
  • North, G.R., Moeng, F.J., Bell, T.L., Cahalan, R.F., The latitude dependence of the variance of zonally averaged quantities (1982) Mon. Weather Rev., 110, pp. 319-326. , 10.1175/1520-0493(1982)110<0319:TLDOTV>2.0.CO;2
  • Preisendorfer, R.W., (1988) Principal Component Analysis in Meteorology and Oceanography, , Elsevier Amsterdan, The Netherlands
  • Ramaswamy, V., Chanin, M.L., Angell, J., Barnett, J., Gaffen, D., Gelman, M., Keckhut, P., Randell, W., The anomalous circulation in the Souhern Hemisphere stratosphere during spring 1987 (1988) Geophys. Res. Lett., 15, pp. 911-914
  • Randel, W.J., Wu, F., Cooling of the Arctic and Antarctic polar stratosphere due to ozone depletion (1999) J. Climate, 12, pp. 1467-1479. , 10.1175/1520-0442(1999)012<1467:COTAAA>2.0.CO;2
  • Richman, M.B., Rotation of principal components (1986) J. Climatol., 6, pp. 293-335
  • Richman, M.B., Gong, X., Relationships between the definition of the hyperplane width to the fidelity of principal component loading patterns (1999) J. Climate, 12, pp. 1557-1576. , 10.1175/1520-0442(1999)012<1557:RBTDOT>2.0.CO;2
  • Robock, A., The climatic aftermath (2002) Science, 295 (5558), pp. 1242-1244. , 10.1126/science.1069903
  • Salles, M.A., Canziani, P.O., Compagnucci, R.H., The spatial and temporal behaviour of the lower stratospheric temperature over the Southern Hemisphere: The MSU view. Part II: Spatial behaviour (2001) Int. J. Climatol., 21, pp. 439-454. , 10.1002/joc.607
  • Implementation Plan, WCRP-105 (1998), SPARC, World Climate Research Program Publication World Meteorological Organisation Geneva, Switzerland; Spencer, R.W., Christy, J.R., Precision lower stratospheric temperature monitoring with MSU: Technique, validation and results 1979-1991 (1993) J. Climate, 6, pp. 1194-1204. , 10.1175/1520-0442(1993)006<1194:PLSTMW>2.0.CO;2
  • Sterin, A.M., An analysis of linear trends in the free atmosphere temperature series for 1958-1997 (1999) Meteorologiai Gidrologia, 5, pp. 52-68
  • Sterin, A.M., Tropospheric and lower stratospheric temperature anomalies based on Global Radiosonde Network Data (2001) Trends Online: A Compendium of Data on Global Change. Carbon Dioxide Information Analysis Center, , Oak Ridge National Laboratory, U.S. Department of Energy Oak Ridge, Tennessee, U.S.A
  • Thompson, D.W.J., Wallace, J.M., Annular modes in the extratropical circulation, Part I: Month-to-month variability (2000) J. Climate, 13, pp. 1000-1016. , 10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2
  • Thompson, D.W.J., Wallace, J.M., Annular modes in the extratropical circulation, Part II: Trends (2000) J. Climate, 13, pp. 1018-1036. , 10.1175/1520-0442(2000)013<1018:AMITEC>2.0.CO;2

Citas:

---------- APA ----------
Castañeda, M.E. & Compagnucci, R.H. (2005) . Temporal variability of lower stratosphere temperature. Studia Geophysica et Geodaetica, 49(4), 573-596.
http://dx.doi.org/10.1007/s11200-005-0028-y
---------- CHICAGO ----------
Castañeda, M.E., Compagnucci, R.H. "Temporal variability of lower stratosphere temperature" . Studia Geophysica et Geodaetica 49, no. 4 (2005) : 573-596.
http://dx.doi.org/10.1007/s11200-005-0028-y
---------- MLA ----------
Castañeda, M.E., Compagnucci, R.H. "Temporal variability of lower stratosphere temperature" . Studia Geophysica et Geodaetica, vol. 49, no. 4, 2005, pp. 573-596.
http://dx.doi.org/10.1007/s11200-005-0028-y
---------- VANCOUVER ----------
Castañeda, M.E., Compagnucci, R.H. Temporal variability of lower stratosphere temperature. Stud. Geophys. Geod. 2005;49(4):573-596.
http://dx.doi.org/10.1007/s11200-005-0028-y