Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Cross-linked and/or acetylated cassava starches were synthesized and characterized. The acetylation increased the water retention capacity and the solubility in water while the higher level of cross-linking produced the opposite effect on starch. Native (NCS) and acetylated cassava starches (ACS) were used to generate starch micro- and nanoparticles by the dialysis technique. The nanoparticle fraction was around 1.8 g 100 g−1 and 12 g 100 g−1 (starch dry basis) for NCS and ACS, respectively. The nanoparticle sizes were around 23–255 nm with zeta potential extending from −4 to −44 mV, while the microscopic fractions ranged 5–87 µm. In addition, the capacity of particles to support potassium sorbate (KS) was tested. NCS and ACS particles supported a similar quantity of KS (≈1400 ppm) and the presence of antimicrobial decreased the particle size for NCS. The precipitation in ethanol technique was also used to generate microparticles where the particles generated from acetylated starches were smaller (8–58 µm) than those from native ones (30–227 µm). The KS content that these particles could incorporate was around 2020 ppm. The applied technique modulated the average dimension of the particles obtained, as well as the antimicrobial retention capacity. These innovative materials could be potentially helpful for shelf life extension by the contribution to the KS stabilization to be incorporated in the bulk of food products. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Registro:

Documento: Artículo
Título:Micro and nanoparticles of native and modified cassava starches as carriers of the antimicrobial potassium sorbate
Autor:Alzate, P.; Zalduendo, M.M.; Gerschenson, L.; Flores, S.K.
Filiación:Facultad de Ciencias Exactas y Naturales (FCEN), Departamento de Industrias, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CABA, Argentina
Palabras clave:Micro- and nanoparticles; Native and modified cassava starch; Potassium sorbate; Acetylation; Food products; Microorganisms; Nanoparticles; Particle size; Plants (botany); Potassium; Precipitation (chemical); Starch; Cassava starch; Innovative materials; Micro and nano-particle; Nanoparticle sizes; Retention capacity; Shelf life extensions; Solubility in waters; Water retention capacity; Potassium sorbate
Año:2016
Volumen:68
Número:11-12
Página de inicio:1038
Página de fin:1047
DOI: http://dx.doi.org/10.1002/star.201600098
Título revista:Starch/Staerke
Título revista abreviado:starch
ISSN:00389056
CODEN:STARD
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00389056_v68_n11-12_p1038_Alzate

Referencias:

  • Joye, I.J., McClements, D.J., Biopolymer-based nanoparticles and microparticles: Fabrication, characterization, and application (2014) Curr. Opin. Colloid Interface Sci, 19, pp. 417-427
  • Matalanis, A., Griffith, J.O., McClements, D.J., Structured biopolymer-based delivery systems for encapsulation, protection, and release of lipophilic compounds (2011) Food Hydrocolloids, 25, pp. 1865-1880
  • Polowsky, P.J., Janaswamy, S., Hydrocolloid-based nutraceutical delivery systems: Effect of counter-ions on the encapsulation and release (2015) Food Hydrocolloids, 43, pp. 658-663
  • Rodrigues, A., Emeje, M., Recent applications of starch derivatives in nanodrug delivery (2012) Carbohydr. Polym, 87, pp. 987-994
  • Kaur, B., Ariffin, F., Bhat, R., Karim, A.A., Progress in starch modificationinthe last decade (2012) Food Hydrocolloids, 26, pp. 398-404
  • Kim, H.-Y., Park, S.S., Lim, S.-T., Preparation, characterization and utilization of starch nanoparticles (2015) Colloids Surf. B, 126, pp. 607-620
  • Gaonkar, G., Mcpherson, A., (2006) Ingredient Interactions: Effects on Food Quality, , CRC Press, Boca Raton, FL, USA
  • Rao, J.P., Geckeler, K.E., Polymer nanoparticles: Preparation techniques and size-controlling parameters (2011) Prog. Polym. Sci, 36, pp. 887-913
  • Chronopoulou, L., Fratoddi, I., Palocci, C., Venditti, I., Russo, M., Osmosis based method drives the self-assembly of polymeric chains into micro- and nanostructures (2009) Langmuir, 25, pp. 11940-11946
  • Nagavarma, B., Hermant, K., Ayaz, A., Vashuda, L., Shivakumar, H., Different techniques for preparation of polymeric nanoparticles-A review (2013) Asian J. Pharm. Clin. Res, 5, pp. 16-23
  • Gliemmo, M.F., Calviño, A.M., Tamasi, O., Gerschenson, L.N., Campos, C.A., Interactions between aspartame, glucose and xylitol in aqueous systems containing potassium sorbate (2008) LWT–Food Sci. Technol, 41, pp. 611-619
  • Flores, S., Haedo, A., Campos, C., Gerschenson, L.N., Antimicrobial performance of potassium sorbate supported in tapioca starch edible films (2007) Eur. Food. Res. Technol, 225, pp. 375-384
  • Shogren, R., Biswas, A., Preparation of water-soluble and water-swellable starch acetates using microwave heating (2006) Carbohydr. Polym, 64, pp. 16-21
  • Bello-Pérez, L., Agama-Acevedo, E., Flores-Zamudio, P., Mendez-Montealvo, G., Rodriguez-Ambriz, S., Effect of low and high acetylation degree in the morphological, physicochemical and structural characteristics of barley starch (2010) LWT–Food Sci. Technol, 43, pp. 1434-1440
  • Atichokudomchai, N., Varavinit, S., Characterization and utilization of acid-modified cross-linked Tapioca Starch in pharmaceutical tablets (2002) Carbohydr. Polym, 53, pp. 263-270
  • Bello-Pérez, L., Contreras-Ramos, S., Jìmenez-Aparicio, A., Paredes-López, O., Acetylation and characterization of banana (Musa paradisiaca) starch (2000) Acta Cient. Venez, 51, pp. 143-149
  • Simi, C., Abraham, T., Hydrophobic grafted and cross-linked starch nanoparticles for drug delivery (2007) Bioprocess Biosyst. Eng, 30, pp. 173-180
  • Ma, X., Jian, R., Chang, P., Yu, J., Fabrication and characterization of citric acid-modified starch nanoparticles/plasticized-starch composites (2008) Biomacromolecules, 9, pp. 3314-3320
  • (1990) Official Methods of Analysis, , AOAC., 13th edn, Association of Official Analyt. Chemists, Washington, DC, USA
  • Lim, S., Seib, P., Preparation and pasting properties of wheat and corn starch phophates (1993) Cereal Chem, 70, pp. 137-144
  • Mirmoghtadaie, L., Kadivar, M., Shahedi, M., Effects of cross-linking and acetylation on oat starch properties (2009) Food Chem, 116, pp. 709-713
  • Wongsagonsup, R., Pujchakarn, T., Jitrakbumrung, S., Chaiwat, W., Effect of cross-linking on physicochemical properties of tapioca starch and its application in soup product (2014) Carbohydr. Polym, 101, pp. 656-665
  • Nabeshima, E., Grossmann, M., Functional properties of pregelatinized and cross-linked cassava starch obtained by extrusion with sodium trimetaphosphate (2001) Carbohydr. Polym, 45, pp. 347-353
  • El Halal, S., Colussi, R., Pinto, V., Bartz, J., E. Structure, morphology and functionality of acetylated and oxidised barley starches (2015) Food Chem, 168, pp. 247-256
  • Chakraborty, S., Sahoo, B., Teraoka, I., Gross, R., Solution properties of starch nanoparticles in water and DMSO as studied by dynamic light scattering (2005) Carbohydr. Polym, 60, pp. 475-481
  • Song, D., Thioc, Y., Deng, Y., Starch nanoparticle formation via reactive extrusion and related mechanism study (2011) Carbohydr. Polym, 85, pp. 208-214
  • El-Feky, G., El-Rafle, M., El-Sheikh, M., El-Naggar, M., Hebeish, A., Utilization of crosslinked starch nanoparticles as a carrier for indomethacin and acyclovir drugs (2015) J. Nanomed. Nanotechnol, 6, p. 254
  • Prieto-Méndez, J., Trejo-Cárdenas, C., Prieto-García, F., Méndez-Marzo, M., Acetilación y caracterización del almidón de cebada (2010) Rev. Latinoam. Recursos Naturales, 6, pp. 32-43
  • Chin, S., Pang, S., Tay, S., Size controlled synthesis of starch nanoparticles by a simple nanoprecipitation method (2011) Carbohydr. Polym, 86, pp. 1817-1819
  • Patindol, J., Shih, F., Ingber, B., Champagne, E., Boue, S., Porous rice powder form the precipitation of gelatinized flour or starch paste with ethanol (2013) Starch/Stärke, 65, pp. 296-303
  • Godet, M.C., Bizot, H., Buléon, A., Crystallization of amylose-fatty acid complexes prepared with different amylose chain lengths (1995) Carbohydr. Polym, 27, pp. 47-52
  • Ofman, M., Campos, C., Gerschenson, L., Effect of preservatives on the functional properties of tapioca starch: Analysis of interactions (2004) LWT–Food Sci. Technol, 37, pp. 355-361

Citas:

---------- APA ----------
Alzate, P., Zalduendo, M.M., Gerschenson, L. & Flores, S.K. (2016) . Micro and nanoparticles of native and modified cassava starches as carriers of the antimicrobial potassium sorbate. Starch/Staerke, 68(11-12), 1038-1047.
http://dx.doi.org/10.1002/star.201600098
---------- CHICAGO ----------
Alzate, P., Zalduendo, M.M., Gerschenson, L., Flores, S.K. "Micro and nanoparticles of native and modified cassava starches as carriers of the antimicrobial potassium sorbate" . Starch/Staerke 68, no. 11-12 (2016) : 1038-1047.
http://dx.doi.org/10.1002/star.201600098
---------- MLA ----------
Alzate, P., Zalduendo, M.M., Gerschenson, L., Flores, S.K. "Micro and nanoparticles of native and modified cassava starches as carriers of the antimicrobial potassium sorbate" . Starch/Staerke, vol. 68, no. 11-12, 2016, pp. 1038-1047.
http://dx.doi.org/10.1002/star.201600098
---------- VANCOUVER ----------
Alzate, P., Zalduendo, M.M., Gerschenson, L., Flores, S.K. Micro and nanoparticles of native and modified cassava starches as carriers of the antimicrobial potassium sorbate. starch. 2016;68(11-12):1038-1047.
http://dx.doi.org/10.1002/star.201600098