El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


A dynamo model is presented, based on a previously introduced kinematic model, in which the effect of the magnetic field on the mass flow through the Lorentz force is included. Given the base mass flow corresponding to the case with no magnetic field, and assuming that the modification of this flow through the Lorentz force can be treated as a perturbation, a complete model of the large-scale magnetic field dynamics can be obtained. The input needed consists of the large-scale meridional and zonal flows, the small-scale magnetic diffusivity, and a constant parameter entering the expression of the α-effect. When applied to a Sun-like star, the model shows realistic dynamics of the magnetic field, including cycle duration, consistent field amplitudes with the correct parity, progression of the zonal magnetic field toward the equator, and motion toward the poles of the radial field at high latitudes. In addition, the radial and zonal components show a correct phase relation, and at the surface level, the magnetic helicity is predominantly negative in the northern hemisphere and positive in the southern hemisphere. © 2019, Springer Nature B.V.


Documento: Artículo
Título:Large-scale Model of the Axisymmetric Dynamo with Feedback Effects
Autor:Sraibman, L.; Minotti, F.
Filiación:Facultad de Ciencias Exactas y Naturales, Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
Instituto de Física del Plasma (INFIP), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:Magnetic fields, models; Solar cycle, models
Título revista:Solar Physics
Título revista abreviado:Sol. Phys.


  • Belucz, B., Dikpati, M., Forgács-Dajka, E., A Babcock–Leighton solar dynamo model with multi-cellular meridional circulation in advection- and diffusion-dominated regimes (2015) Astrophys. J., 806, p. 169
  • Bonanno, A., Elstner, D., Rüdiger, G., Belvedere, G., Parity properties of an advection dominated solar α2ω -dynamo (2002) Astron. Astrophys., 390, p. 673
  • Brandenburg, A., Moss, D., Tuominen, I., Stratification and thermodynamics in mean-field dynamos (1992) Astron. Astrophys., 265, p. 328
  • Brandenburg, A., Moss, D., Rüdiger, G., Tuominen, I., The nonlinear solar dynamo and differential rotation: a Taylor number puzzle? (1990) Solar Phys., 128, p. 243
  • Cameron, R.H., Dikpati, M., Brandenburg, A., The global solar dynamo (2017) Space Sci. Rev., p. 367
  • Cameron, R.H., Schüssler, M., The crucial role of surface magnetic fields for the solar dynamo (2015) Science, p. 1333
  • Charbonneau, P., Dynamo models of the solar cycle (2010) Living Rev. Solar Phys., 7, p. 3
  • Charbonneau, P., Christensen-Dalsgaard, J., Henning, R., Larsen, R.M., Helioseismic constraints on the structure of the solar tachocline (1999) Astrophys. J., 527, p. 445
  • Choudhuri, A.R., Schussler, M., Dikpati, M., The solar dynamo with meridional circulation (1995) Astron. Astrophys., 303
  • Clark, R.A., Ferziger, J.H., Reynolds, W.C., Evaluation of subgrid-scale models using an accurately simulated turbulent flow (1979) J. Fluid Mech., 91, p. 1
  • Dikpati, M., Charbonneau, P., A Babcock–Leighton flux transport dynamo with solar-like differential rotation (1999) Astrophys. J. Lett., 518, p. 508
  • Durney, B.R., On a Babcock–Leighton dynamo model with a deep-seated generating layer for the toroidal magnetic field (1995) Solar Phys., 63, p. 3
  • Gnevyshev, M.N., Ohl, A.I., Solar activity and its terrestrial manifestations (1948) Astron. Zh., 25, p. 18
  • Guererro, G.A., Munoz, J.D., Kinematic solar dynamo models with a deep meridional flow (2004) Mon. Not. Roy. Astron. Soc., 350, p. 317
  • Hathaway, D.H., The solar cycle (2015) Living Rev. Solar Phys., 12, p. 4
  • Hathaway, D.H., Rightmire, L., Variations in the sun’s meridional flow over a solar cycle (2010) Science, 327, p. 1350
  • Hazra, G., Choudhuri, A.R., A theoretical model of the variation of the meridional circulation with the solar cycle (2017) Mon. Not. Roy. Astron. Soc., 472, p. 2728
  • Hazra, G., Karak, B.B., Choudhuri, A.R., Is a deep one-cell meridional circulation essential for the flux transport solar dynamo? (2014) Astrophys. J., 782, p. 93
  • Howe, R., Christensen-Dalsgaard, J., Hill, F., Komm, R.W., Larsen, R.M., Schou, J., Dynamic variations at the base of the solar convection zone (2000) Science, 287, p. 2456
  • Hung, C.P., Jouve, L., Brun, A.S., Fournier, A., Talagrand, O., Estimating the deep solar meridional circulation using magnetic observations and a dynamo model: a variational approach (2015) Astrophys. J., 814, p. 151
  • Jackiewicz, J., Serebryanskiy, A., Kholikov, S., Meridional flow in the solar convection zone. ii. Helioseismic inversions of GONG data (2015) Astrophys. J., 805, p. 133
  • Jouve, L., Brun, A.S., On the role of meridional flows in flux transport dynamo models (2007) Astron. Astrophys., 474, p. 239
  • Karak, B.B., Cameron, R., Babcock–Leighton solar dynamo: the role of downward pumping and the equatorward propagation of activity (2016) Astrophys. J., 832, p. 94
  • Kitchatinov, L.L., Nepomnyashchikh, A.A., A joined model for solar dynamo and differential rotation (2017) Astron. Lett., 43, p. 332
  • Küker, M., Arlt, R., Rüdiger, G., The Maunder minimum as due to magnetic [InlineEquation not available: see fulltext.]-quenching (1999) Astron. Astrophys., 343, p. 977
  • Küker, M., Rüdiger, G., Schultz, M., Circulation-dominated solar shell dynamo models with positive alpha effect (2001) Astron. Astrophys., 374, p. 301
  • Lemerle, A., Charbonneau, P., A coupled 2 × 2d Babcock–Leighton solar dynamo model. ii. Reference dynamo solutions (2017) Astrophys. J., 834, p. 133
  • Leonard, A., Energy cascade in large-eddy simulations of turbulent fluid flows (1974) Adv. Geophys., 18 (A), p. 237
  • Miesch, M.S., Dikpati, M., A three-dimensional Babcock–Leighton solar dynamo model (2014) Astrophys. J. Lett., 785, p. 1
  • Miesch, M.S., Teweldebirhan, K., A three-dimensional Babcock–Leighton solar dynamo model: initial results with axisymmetric flows (2016) Adv. Space Res., 58, p. 1571
  • Minotti, F.O., Self-consistent derivation of subgrid stresses for large-scale fluid equations (2000) Phys. Rev. E, 61, p. 429
  • Passos, D., Charbonneau, P., Miesch, M., Meridional circulation dynamics from 3d magnetohydrodynamic global simulations of solar convection (2015) Astrophys. J. Lett., 800
  • Passos, D., Nandy, D., Hazra, S., Lopes, I., A solar dynamo model driven by mean-field alpha and Babcock–Leighton sources: fluctuations, grand-minima-maxima, and hemispheric asymmetry in sunspot cycles (2014) Astron. Astrophys., 563
  • Pope, S.B., (2000) Turbulent Flows, p. 587. , Cambridge University Press, UK
  • Rempel, M., Flux-transport dynamos with Lorentz force feedback on differential rotation and meridional flow: saturation mechanism and torsional oscillations (2006) Astrophys. J. Lett., 647, p. 662
  • Rüdiger, G., Hollerbach, R., (2004) The Magnetic Universe: Geophysical and Astrophysical Dynamo Theory, p. 137. , Wiley, Germany
  • Schad, A., Timmer, J., Roth, M., Global helioseismic evidence for a deeply penetrating solar meridional flow consisting of multiple flow cells (2013) Astrophys. J. Lett., 778, p. 38
  • Schou, J., Antia, H.M., Basu, S., Bogart, R.S., Bush, R.I., Chitre, S.M., Helioseismic studies of differential rotation in the solar envelope by the solar oscillations investigation using the Michelson Doppler Imager (1998) Astrophys. J., 505, p. 390
  • Schumann, U., Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli (1975) J. Comput. Phys., 18, p. 376
  • Scotti, A., Meneveau, C., Lilly, D.K., Generalized Smagorinsky model for anisotropic grids (1993) Phys. Fluids A, 5, p. 2306
  • Sraibman, L., Minotti, F., Large-scale model of the axisymmetric kinematic dynamo (2016) Mon. Not. Roy. Astron. Soc., 456, p. 3715
  • Thompson, M.J., Helioseismology and the sun’s interior (2004) Astron. Geophys., 45, p. 4.21
  • Wang, Y.-M., Sheeley, N.R., Jr., Magnetic flux transport and the sun’s dipole moment – new twists to the Babcock–Leighton model (1991) Astrophys. J. Lett., 375, p. 761
  • Zhao, J., Bogart, R.S., Kosovichev, A.G., Duvall, T.L., Hartlep, T., Detection of equatorward meridional flow and evidence of double-cell meridional circulation inside the sun (2013) Astrophys. J. Lett., 774


---------- APA ----------
Sraibman, L. & Minotti, F. (2019) . Large-scale Model of the Axisymmetric Dynamo with Feedback Effects. Solar Physics, 294(1).
---------- CHICAGO ----------
Sraibman, L., Minotti, F. "Large-scale Model of the Axisymmetric Dynamo with Feedback Effects" . Solar Physics 294, no. 1 (2019).
---------- MLA ----------
Sraibman, L., Minotti, F. "Large-scale Model of the Axisymmetric Dynamo with Feedback Effects" . Solar Physics, vol. 294, no. 1, 2019.
---------- VANCOUVER ----------
Sraibman, L., Minotti, F. Large-scale Model of the Axisymmetric Dynamo with Feedback Effects. Sol. Phys. 2019;294(1).