Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The cluster formed by active regions (ARs) NOAA 11121 and 11123, approximately located on the solar central meridian on 11 November 2010, is of great scientific interest. This complex was the site of violent flux emergence and the source of a series of Earth-directed events on the same day. The onset of the events was nearly simultaneously observed by the Atmospheric Imaging Assembly (AIA) telescope onboard the Solar Dynamics Observatory (SDO) and the Extreme-Ultraviolet Imagers (EUVI) on the Sun-Earth Connection Coronal and Heliospheric Investigation (SECCHI) suite of telescopes onboard the Solar-Terrestrial Relations Observatory (STEREO) twin spacecraft. The progression of these events in the low corona was tracked by the Large Angle Spectroscopic Coronagraphs (LASCO) onboard the Solar and Heliospheric Observatory (SOHO) and the SECCHI/COR coronagraphs on STEREO. SDO and SOHO imagers provided data from the Earth’s perspective, whilst the STEREO twin instruments procured images from the orthogonal directions. This spatial configuration of spacecraft allowed optimum simultaneous observations of the AR cluster and the coronal mass ejections that originated in it. Quadrature coronal observations provided by STEREO revealed many more ejective events than were detected from Earth. Furthermore, joint observations by SDO/AIA and STEREO/SECCHI EUVI of the source region indicate that all events classified by GOES as X-ray flares had an ejective coronal counterpart in quadrature observations. These results directly affect current space weather forecasting because alarms might be missed when there is a lack of solar observations in a view direction perpendicular to the Sun-Earth line. © 2015, Springer Science+Business Media Dordrecht.

Registro:

Documento: Artículo
Título:Coronal Mass Ejections from the Same Active Region Cluster: Two Different Perspectives
Autor:Cremades, H.; Mandrini, C.H.; Schmieder, B.; Crescitelli, A.M.
Filiación:CONICET, Universidad Tecnológica Nacional, Mendoza, Argentina
Instituto de Astronomía y Física del Espacio (IAFE), CONICET-UBA, Buenos Aires, Argentina
UBA, Buenos Aires, Argentina
Observatoire de Paris, Meudon, 92190, France
Instituto Balseiro, Universidad Nacional de Cuyo, San Carlos de Bariloche, Argentina
Palabras clave:Coronal mass ejections, initiation and propagation; Coronal mass ejections, low coronal signatures; Prominences, dynamics
Año:2015
Volumen:290
Número:6
Página de inicio:1671
Página de fin:1686
DOI: http://dx.doi.org/10.1007/s11207-015-0717-9
Título revista:Solar Physics
Título revista abreviado:Sol. Phys.
ISSN:00380938
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00380938_v290_n6_p1671_Cremades

Referencias:

  • Alfvén, H., The Sun’s general magnetic field (1956) Tellus, 8, p. 1
  • Andrews, M.D., The front-to-back asymmetry of coronal emission (2002) Solar Phys., 208, p. 317
  • Boursier, Y., Lamy, P., Llebaria, A., Goudail, F., Robelus, S., The ARTEMIS catalog of LASCO coronal mass ejections. Automatic Recognition of Transient Events and Marseille Inventory from Synoptic maps (2009) Solar Phys., 257, p. 125
  • Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Eyles, C.J., The Large Angle Spectroscopic Coronagraph (LASCO) (1995) Solar Phys., 162, p. 357
  • Byrne, J.P., Morgan, H., Habbal, S.R., Gallagher, P.T., Automatic detection and tracking of coronal mass ejections. II. Multiscale filtering of coronagraph images (2012) Astrophys. J., 752, p. 145
  • Carrington, R.C., Description of a singular appearance seen in the Sun on September 1, 1859 (1859) Mon. Not. Roy. Astron. Soc., 20, p. 13
  • Cremades, H., Bothmer, V., On the three-dimensional configuration of coronal mass ejections (2004) Astron. Astrophys., 422, p. 307
  • Cremades, H., Bothmer, V., Geometrical properties of coronal mass ejections (2005) Coronal and Stellar Mass Ejections, p. 48. , Dere K., Wang J., Yan Y., (eds), IAU Symp., 226
  • Crifo, F., Picat, J.P., Cailloux, M., Coronal transients – Loop or bubble (1983) Solar Phys., 83, p. 143
  • Démoulin, P., Hénoux, J.C., Priest, E.R., Mandrini, C.H., Quasi-separatrix layers in solar flares. I. Method (1996) Astron. Astrophys., 308, p. 643. , ADS
  • Dere, K.P., Brueckner, G.E., Howard, R.A., Michels, D.J., Delaboudiniere, J.P., LASCO and EIT observations of helical structure in coronal mass ejections (1999) Astrophys. J., 516, p. 465
  • Domingo, V., Fleck, B., Poland, A.I., The SOHO mission: An overview (1995) Solar Phys., 162, p. 1
  • Gibson, S.E., Low, B.C., Three-dimensional and twisted: An MHD interpretation of on-disk observational characteristics of coronal mass ejections (2000) J. Geophys. Res., 105, p. 18187
  • Gopalswamy, N., Davila, J.M., St. Cyr, O.C., Sittler, E.C., Auchère, F., Duvall, T.L., Hoeksema, J.T., Collier, M.R., Earth-Affecting Solar Causes Observatory (EASCO): A potential international living with a star mission from Sun–Earth L5 (2011) J. Atmos. Solar-Terr. Phys., 73, p. 658. , http://esoads.eso.org/abs/2011JASTP.73.658G
  • Gosling, J.T., Coronal mass ejections – The link between solar and geomagnetic activity (1993) Phys. Fluids B, 5, p. 2638
  • Gosling, J.T., Hildner, E., MacQueen, R.M., Munro, R.H., Poland, A.I., Ross, C.L., Mass ejections from the sun – A view from SKYLAB (1974) J. Geophys. Res., 79, p. 4581. , http://esoads.eso.org/abs/1974JGR..79.4581G
  • Howard, R.A., Michels, D.J., Sheeley, N.R., Jr., Koomen, M.J., The observation of a coronal transient directed at earth (1982) Astrophys. J. Lett., 263
  • Howard, R.A., Moses, J.D., Vourlidas, A., Newmark, J.S., Socker, D.G., Plunkett, S.P., Korendyke, C.M., Carter, T., Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) (2008) Space Sci. Rev., 136, p. 67
  • Howard, T.A., DeForest, C.E., The Thomson surface. I. Reality and myth (2012) Astrophys. J., 752, p. 130. , ADS
  • Howard, T.A., Harrison, R.A., Stealth coronal mass ejections: A perspective (2013) Solar Phys., 285, p. 269
  • Howard, T.A., Nandy, D., Koepke, A.C., Kinematic properties of solar coronal mass ejections: Correction for projection effects in spacecraft coronagraph measurements (2008) J. Geophys. Res., 113, p. 1104. , ADS
  • Huang, Z., Madjarska, M.S., Koleva, K., Doyle, J.G., Duchlev, P., Dechev, M., Reardon, K., Spectroscopy and multiwavelength imaging of a solar flare caused by filament eruption (2014) Astron. Astrophys., 566. , ADS
  • Hundhausen, A.J., Sizes and locations of coronal mass ejections – SMM observations from 1980 and 1984 – 1989 (1993) J. Geophys. Res., 98, p. 13177
  • Kaiser, M.L., Kucera, T.A., Davila, J.M., St. Cyr, O.C., Guhathakurta, M., Christian, E., The STEREO mission: An introduction (2008) Space Sci. Rev., 136, p. 5
  • Kilpua, E.K.J., Mierla, M., Zhukov, A.N., Rodriguez, L., Vourlidas, A., Wood, B., Solar sources of interplanetary coronal mass ejections during the Solar Cycle 23/24 minimum (2014) Solar Phys., 289, p. 3773. , http://esoads.eso.org/abs/2014SoPh.289.3773K
  • Lara, A., Gopalswamy, N., Xie, H., Mendoza-Torres, E., Pérez-Eríquez, R., Michalek, G., Are halo coronal mass ejections special events? (2006) J. Geophys. Res., 111, p. 6107
  • Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Waltham, N., The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO) (2012) Solar Phys., 275, p. 17
  • Lindemann, F.A., Note on the theory of magnetic storms (1919) Phil. Mag., 38, p. 669
  • Lugaz, N., Hernandez-Charpak, J.N., Roussev, I.I., Davis, C.J., Vourlidas, A., Davies, J.A., Determining the azimuthal properties of coronal mass ejections from multi-spacecraft remote-sensing observations with STEREO SECCHI (2010) Astrophys. J., 715, p. 493
  • Mandrini, C.H., Schmieder, B., Démoulin, P., Guo, Y., Cristiani, G.D., Topological analysis of emerging bipole clusters producing violent solar events (2014) Solar Phys., 289, p. 2041. , ADS
  • Michałek, G., Gopalswamy, N., Yashiro, S., A new method for estimating widths, velocities, and source location of halo coronal mass ejections (2003) Astrophys. J., 584, p. 472
  • Mierla, M., Inhester, B., Antunes, A., Boursier, Y., Byrne, J.P., Colaninno, R., Davila, J., Zhukov, A.N., On the 3-D reconstruction of coronal mass ejections using coronagraph data (2010) Ann. Geophys., 28, p. 203. , http://esoads.eso.org/abs/2010AnGeo.28.203M
  • Moran, T.G., Davila, J.M., Three-dimensional polarimetric imaging of coronal mass ejections (2004) Science, 305, p. 66
  • Morrison, P., Solar origin of cosmic-ray time variations (1956) Phys. Rev., 101, p. 1397
  • Nitta, N.V., Aschwanden, M.J., Freeland, S.L., Lemen, J.R., Wülser, J.-P., Zarro, D.M., The association of solar flares with coronal mass ejections during the extended solar minimum (2014) Solar Phys., 289, p. 1257
  • Olmedo, O., Zhang, J., Wechsler, H., Poland, A., Borne, K., Automatic detection and tracking of coronal mass ejections in coronagraph time series (2008) Solar Phys., 248, p. 485
  • Pesnell, W.D., Thompson, B.J., Chamberlin, P.C., The Solar Dynamics Observatory (SDO) (2012) Solar Phys., 275, p. 3
  • Pick, M., Forbes, T.G., Mann, G., Cane, H.V., Chen, J., Ciaravella, A., Cremades, H., Marqué, C., Multi-wavelength observations of CMEs and associated phenomena. Report of working group F (2006) Space Sci. Rev., 123, p. 341
  • Robbrecht, E., Berghmans, D., Automated recognition of coronal mass ejections (CMEs) in near-real-time data (2004) Astron. Astrophys., 425, p. 1097. , ADS
  • Robbrecht, E., Patsourakos, S., Vourlidas, A., No trace left behind: STEREO observation of a coronal mass ejection without low coronal signatures (2009) Astrophys. J., 701, p. 283
  • Schou, J., Scherrer, P.H., Bush, R.I., Wachter, R., Couvidat, S., Rabello-Soares, M.C., Bogart, R.S., Tomczyk, S., Design and ground calibration of the Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory (SDO) (2012) Solar Phys., 275, p. 229
  • Schwenn, R., dal Lago, A., Huttunen, E., Gonzalez, W.D., The association of coronal mass ejections with their effects near the Earth (2005) Ann. Geophys., 23, p. 1033
  • Song, H.Q., Chen, Y., Ye, D.D., Han, G.Q., Du, G.H., Li, G., Zhang, J., Hu, Q., A study of fast flareless coronal mass ejections (2013) Astrophys. J., 773, p. 129
  • Temmer, M., Preiss, S., Veronig, A.M., CME projection effects studied with STEREO/COR and SOHO/LASCO (2009) Solar Phys., 256, p. 183. , ADS
  • Thernisien, A., Vourlidas, A., Howard, R.A., CME reconstruction: Pre-STEREO and STEREO era (2011) J. Atmos. Solar-Terr. Phys., 73, p. 1156. , http://esoads.eso.org/abs/2011JASTP.73.1156T
  • Tousey, R., Bartoe, J.D.F., Bohilin, J.D., Brueckner, G.E., Purcell, J.D., Scherrer, V.E., Schumacher, R.J., Vanhoosier, M.E., Preliminary results from the NRL/ATM instruments from SKYLAB SL/2 (1974) Coronal Disturbances, p. 491. , Newkirk G.A., (ed), IAU Symp., 57
  • van de Hulst, H.C., The amount of polarization by interstellar grains (1950) Astrophys. J., 112, p. 1
  • Vourlidas, A., Howard, R.A., The proper treatment of coronal mass ejection brightness: A new methodology and implications for observations (2006) Astrophys. J., 642, p. 1216
  • Vourlidas, A., Lynch, B.J., Howard, R.A., Li, Y., How many CMEs have flux ropes? Deciphering the signatures of shocks, flux ropes, and prominences in coronagraph observations of CMEs (2013) Solar Phys., 284, p. 179
  • Vršnak, B., Sudar, D., Ruždjak, D., Žic, T., Projection effects in coronal mass ejections (2007) Astron. Astrophys., 469, p. 339. , ADS
  • Wang, Y., Chen, C., Gui, B., Shen, C., Ye, P., Wang, S., Statistical study of coronal mass ejection source locations: Understanding CMEs viewed in coronagraphs (2011) J. Geophys. Res., 116, p. 4104. , ADS
  • Webb, D.F., Erupting prominences and the geometry of coronal mass ejections (1988) J. Geophys. Res., 93, p. 1749
  • Webb, D.F., Howard, T.A., Coronal mass ejections: Observations (2012) Living Rev. Solar Phys., 9, p. 3. , http://www.livingreviews.org/lrsp-2012-3
  • Xie, H., Ofman, L., Lawrence, G., Cone model for halo CMEs: Application to space weather forecasting (2004) J. Geophys. Res., 109, p. 3109
  • Yashiro, S., Gopalswamy, N., Michalek, G., St. Cyr, O.C., Plunkett, S.P., Rich, N.B., Howard, R.A., A catalog of white light coronal mass ejections observed by the SOHO spacecraft (2004) J. Geophys. Res., 109, p. 7105
  • Zhao, X.P., Plunkett, S.P., Liu, W., Determination of geometrical and kinematical properties of halo coronal mass ejections using the cone model (2002) J. Geophys. Res., 107, p. 1223

Citas:

---------- APA ----------
Cremades, H., Mandrini, C.H., Schmieder, B. & Crescitelli, A.M. (2015) . Coronal Mass Ejections from the Same Active Region Cluster: Two Different Perspectives. Solar Physics, 290(6), 1671-1686.
http://dx.doi.org/10.1007/s11207-015-0717-9
---------- CHICAGO ----------
Cremades, H., Mandrini, C.H., Schmieder, B., Crescitelli, A.M. "Coronal Mass Ejections from the Same Active Region Cluster: Two Different Perspectives" . Solar Physics 290, no. 6 (2015) : 1671-1686.
http://dx.doi.org/10.1007/s11207-015-0717-9
---------- MLA ----------
Cremades, H., Mandrini, C.H., Schmieder, B., Crescitelli, A.M. "Coronal Mass Ejections from the Same Active Region Cluster: Two Different Perspectives" . Solar Physics, vol. 290, no. 6, 2015, pp. 1671-1686.
http://dx.doi.org/10.1007/s11207-015-0717-9
---------- VANCOUVER ----------
Cremades, H., Mandrini, C.H., Schmieder, B., Crescitelli, A.M. Coronal Mass Ejections from the Same Active Region Cluster: Two Different Perspectives. Sol. Phys. 2015;290(6):1671-1686.
http://dx.doi.org/10.1007/s11207-015-0717-9