Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The main aim of this study is to compare the amount of twist present in emerging active regions (ARs) from photospheric and coronal data. We use linear force-free field models of the observed coronal structure of ARs to determine the global twist. The coronal twist is derived, on one hand, from the force-free parameter [α] of the model and, on the other, from the computed coronal magnetic helicity normalized by the magnetic flux squared. We compare our results, for the same set of ARs, with those of Poisson et al. (Solar Phys.290, 727, 2015), in which the twist was estimated using the so-called magnetic tongues observed in line-of-sight magnetograms during AR emergence. We corroborate the agreement between the photospheric and coronal twist-sign and the presence of magnetic tongues as an early proxy of the AR non-potentiality. We find a globally linear relationship between the coronal twist and the one previously deduced for the emerging AR flux rope at the photospheric level. The coronal-twist value is typically lower by a factor of six than the one deduced for the emerging flux rope. We interpret this result as due to the partial emergence of the flux rope that forms the region. © 2015, Springer Science+Business Media Dordrecht.

Registro:

Documento: Artículo
Título:Active-Region Twist Derived from Magnetic Tongues and Linear Force-Free Extrapolations
Autor:Poisson, M.; López Fuentes, M.; Mandrini, C.H.; Démoulin, P.
Filiación:Instituto de Astronomía y Física del Espacio (IAFE), CONICET-UBA, Buenos Aires, Argentina
Facultad de Ciencias Exactas y Naturales (FCEN), UBA, Buenos Aires, Argentina
Observatoire de Paris, LESIA, UMR 8109 (CNRS), Meudon Principal Cedex, 92195, France
Palabras clave:Active regions: magnetic fields; Active regions: structure; Corona: models; Helicity: magnetic
Año:2015
Volumen:290
Número:11
Página de inicio:3279
Página de fin:3294
DOI: http://dx.doi.org/10.1007/s11207-015-0804-y
Título revista:Solar Physics
Título revista abreviado:Sol. Phys.
ISSN:00380938
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00380938_v290_n11_p3279_Poisson

Referencias:

  • Alissandrakis, C.E., On the computation of constant alpha force-free magnetic field (1981) Astron. Astrophys., 100, p. 197. , ADS
  • Berger, M.A., Rigorous new limits on magnetic helicity dissipation in the solar corona (1984) Geophys. Astrophys. Fluid Dyn., 30, p. 79. , ADS
  • Berger, M.A., Structure and stability of constant-alpha force-free fields (1985) Astrophys. J. Suppl., 59, p. 433. , ADS
  • Berger, M.A., Introduction to magnetic helicity (1999) Plasma Phys. Control. Fusion, 41, p. 167. , ADS
  • Burnette, A.B., Canfield, R.C., Pevtsov, A.A., Photospheric and coronal currents in solar active regions (2004) Astrophys. J., 606, p. 565
  • Delaboudinière, J.-P., Artzner, G.E., Brunaud, J., Gabriel, A.H., Hochedez, J.F., Millier, F., EIT: Extreme-ultraviolet imaging telescope for the SOHO mission (1995) Solar Phys., 162, p. 291. , ADS
  • Démoulin, P., Pariat, E., Modelling and observations of photospheric magnetic helicity (2009) Adv. Space Res., 43, p. 1013. , ADS
  • Démoulin, P., Mandrini, C.H., van Driel-Gesztelyi, L., Thompson, B.J., Plunkett, S., Kovári, Z., Aulanier, G., Young, A., What is the source of the magnetic helicity shed by CMEs? The long-term helicity budget of AR 7978 (2002) Astron. Astrophys., 382, p. 650. , ADS
  • Emonet, T., Moreno-Insertis, F., The physics of twisted magnetic tubes rising in a stratified medium: Two-dimensional results (1998) Astrophys. J., 492, p. 804. , ADS
  • Fan, Y., Nonlinear growth of the three-dimensional undular instability of a horizontal magnetic layer and the formation of arching flux tubes (2001) Astrophys. J., 546, p. 509. , ADS
  • Fan, Y., Magnetic fields in the solar convection zone (2009) Living Rev. Solar Phys., 6, p. 4. , ADS
  • Gosain, S., Démoulin, P., López Fuentes, M., Distribution of electric currents in sunspots from photosphere to corona (2014) Astrophys. J., 793, p. 15. , ADS
  • Green, L.M., López Fuentes, M.C., Mandrini, C.H., Démoulin, P., Van Driel-Gesztelyi, L., Culhane, J.L., The magnetic helicity budget of a cme-prolific active region (2002) Solar Phys., 208, p. 43. , ADS
  • Holder, Z.A., Canfield, R.C., McMullen, R.A., Nandy, D., Howard, R.F., Pevtsov, A.A., On the tilt and twist of solar active regions (2004) Astrophys. J., 611, p. 1149. , ADS
  • Hood, A.W., Archontis, V., MacTaggart, D., 3D MHD flux emergence experiments: Idealised models and coronal interactions (2012) Solar Phys., 278, p. 3. , ADS
  • Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO) (2012) Solar Phys., 275, p. 17. , ADS
  • Longcope, D.W., Welsch, B.T., A model for the emergence of a twisted magnetic flux tube (2000) Astrophys. J., 545, p. 1089. , ADS
  • López Fuentes, M.C., Klimchuk, J.A., Démoulin, P., The magnetic structure of coronal loops observed by TRACE (2006) Astrophys. J., 639, p. 459. , ADS
  • López Fuentes, M.C., Demoulin, P., Mandrini, C.H., van Driel-Gesztelyi, L., The counterkink rotation of a non-hale active region (2000) Astrophys. J., 544, p. 540. , ADS
  • López Fuentes, M.C., Démoulin, P., Mandrini, C.H., Pevtsov, A.A., van Driel-Gesztelyi, L., Magnetic twist and writhe of active regions. On the origin of deformed flux tubes (2003) Astron. Astrophys., 397, p. 305. , ADS
  • Luoni, M.L., Démoulin, P., Mandrini, C.H., van Driel-Gesztelyi, L., Twisted flux tube emergence evidenced in longitudinal magnetograms: Magnetic tongues (2011) Solar Phys., 270, p. 45. , ADS
  • Mandrini, C.H., Démoulin, P., van Driel-Gesztelyi, L., Green, L., López Fuentes, M.C., Magnetic helicity budget of solar-active regions from the photosphere to magnetic clouds (2004) Astrophys. Space Sci., 290, p. 319. , ADS
  • Mandrini, C.H., Pohjolainen, S., Dasso, S., Green, L.M., Démoulin, P., van Driel-Gesztelyi, L., Interplanetary flux rope ejected from an X-ray bright point. The smallest magnetic cloud source-region ever observed (2005) Astron. Astrophys., 434, p. 725. , ADS
  • Pariat, E., Aulanier, G., Schmieder, B., Georgoulis, M.K., Rust, D.M., Bernasconi, P.N., Resistive emergence of undulatory flux tubes (2004) Astrophys. J., 614, p. 1099. , ADS
  • Pevtsov, A.A., Maleev, V.M., Longcope, D.W., Helicity evolution in emerging active regions (2003) Astrophys. J., 593, p. 1217. , ADS
  • Pevtsov, A.A., Berger, M.A., Nindos, A., Norton, A.A., van Driel-Gesztelyi, L., Magnetic helicity, tilt, and twist (2014) Space Sci. Rev., 186, p. 285. , ADS
  • Poisson, M., Mandrini, C.H., Démoulin, P., López Fuentes, M., Evidence of twisted flux-tube emergence in active regions (2015) Solar Phys., 290, p. 727. , ADS
  • Scherrer, P.H., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Kosovichev, A.G., Schou, J., The solar oscillations investigation—Michelson Doppler Imager (1995) Solar Phys., 162, p. 129. , ADS
  • Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO) (2012) Solar Phys., 275, p. 207. , ADS
  • Sturrock, P.A., (1994) Plasma Physics, An Introduction to the Theory of Astrophysical, Geophysical and Laboratory Plasmas, , Cambridge University Press, Cambridge: ADS
  • Szajko, N.S., Cristiani, G., Mandrini, C.H., Dal Lago, A., Very intense geomagnetic storms and their relation to interplanetary and solar active phenomena (2013) Adv. Space Res., 51, p. 1842. , ADS
  • Tziotziou, K., Georgoulis, M.K., Raouafi, N.-E., The magnetic energy-helicity diagram of solar active regions (2012) Astrophys. J. Lett., 759. , ADS
  • Valori, G., Green, L.M., Démoulin, P., Vargas Domínguez, S., van Driel-Gesztelyi, L., Wallace, A., Baker, D., Fuhrmann, M., Nonlinear force-free extrapolation of emerging flux with a global twist and serpentine fine structures (2012) Solar Phys., 278, p. 73. , ADS
  • Vargas Domínguez, S., van Driel-Gesztelyi, L., Bellot Rubio, L.R., Granular-scale elementary flux emergence episodes in a solar active region (2012) Solar Phys., 278, p. 99. , ADS
  • Yang, S., Zhang, H., Büchner, J., Magnetic helicity accumulation and tilt angle evolution of newly emerging active regions (2009) Astron. Astrophys., 502, p. 333. , ADS

Citas:

---------- APA ----------
Poisson, M., López Fuentes, M., Mandrini, C.H. & Démoulin, P. (2015) . Active-Region Twist Derived from Magnetic Tongues and Linear Force-Free Extrapolations. Solar Physics, 290(11), 3279-3294.
http://dx.doi.org/10.1007/s11207-015-0804-y
---------- CHICAGO ----------
Poisson, M., López Fuentes, M., Mandrini, C.H., Démoulin, P. "Active-Region Twist Derived from Magnetic Tongues and Linear Force-Free Extrapolations" . Solar Physics 290, no. 11 (2015) : 3279-3294.
http://dx.doi.org/10.1007/s11207-015-0804-y
---------- MLA ----------
Poisson, M., López Fuentes, M., Mandrini, C.H., Démoulin, P. "Active-Region Twist Derived from Magnetic Tongues and Linear Force-Free Extrapolations" . Solar Physics, vol. 290, no. 11, 2015, pp. 3279-3294.
http://dx.doi.org/10.1007/s11207-015-0804-y
---------- VANCOUVER ----------
Poisson, M., López Fuentes, M., Mandrini, C.H., Démoulin, P. Active-Region Twist Derived from Magnetic Tongues and Linear Force-Free Extrapolations. Sol. Phys. 2015;290(11):3279-3294.
http://dx.doi.org/10.1007/s11207-015-0804-y