Artículo

Trottet, G.; Raulin, J.-P.; Mackinnon, A.; Giménez de Castro, G.; Simões, P.J.A.; Cabezas, D.; de La Luz, V.; Luoni, M.; Kaufmann, P. "Origin of the 30 THz Emission Detected During the Solar Flare on 2012 March 13 at 17:20 UT" (2015) Solar Physics. 290(10):2809-2826
El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Solar observations in the infrared domain can bring important clues on the response of the low solar atmosphere to primary energy released during flares. At present, the infrared continuum has been detected at 30 THz (10 μm) in only a few flares. SOL2012-03-13, which is one of these flares, has been presented and discussed in Kaufmann et al. (Astrophys. J.768, 134, 2013). No firm conclusions were drawn on the origin of the mid-infrared radiation. In this work we present a detailed multi-frequency analysis of the SOL2012-03-13 event, including observations at radio-millimeter and submillimeter wavelengths, in hard X-rays (HXR), gamma-rays (GR), Hα, and white light. The HXR/GR spectral analysis shows that SOL2012-03-13 is a GR line flare and allows estimating the numbers of and energy contents in electrons, protons, and α particles produced during the flare. The energy spectrum of the electrons producing the HXR/GR continuum is consistent with a broken power-law with an energy break at (Formula presented.). We show that the high-energy part ((Formula presented.)) of this distribution is responsible for the high-frequency radio emission ((Formula presented.)) detected during the flare. By comparing the 30 THz emission expected from semi-empirical and time-independent models of the quiet and flare atmospheres, we find that most ((Formula presented.)) of the observed 30 THz radiation can be attributed to thermal free–free emission of an optically thin source. Using the F2 flare atmospheric model (Machado et al. in Astrophys. J.242, 336, 1980), this thin source is found to be at temperatures T (Formula presented.) and is located well above the minimum temperature region. We argue that the chromospheric heating, which results in 80 % of the 30 THz excess radiation, can be due to energy deposition by nonthermal flare-accelerated electrons, protons, and α particles. The remaining 20 % of the 30 THz excess emission is found to be radiated from an optically thick atmospheric layer at T (Formula presented.), below the temperature minimum region, where direct heating by nonthermal particles is insufficient to account for the observed infrared radiation. © 2015, Springer Science+Business Media Dordrecht.

Registro:

Documento: Artículo
Título:Origin of the 30 THz Emission Detected During the Solar Flare on 2012 March 13 at 17:20 UT
Autor:Trottet, G.; Raulin, J.-P.; Mackinnon, A.; Giménez de Castro, G.; Simões, P.J.A.; Cabezas, D.; de La Luz, V.; Luoni, M.; Kaufmann, P.
Filiación:LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité, 5 place Jules Janssen, Meudon, 92195, France
CRAAM Universidade Presbiteriana Mackenzie, São Paulo, Brazil
School of Physics and Astronomy, SUPA, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
SCiESMEX, Instituto de Geofisica, Unidad Michoacan, Universidad Nacional Autonoma de Mexico, Morelia, Michoacan CP 58190, Mexico
IAFE, University of Buenos Aires, Buenos Aires, Argentina
CCS, University of Campinas, Campinas, Brazil
Palabras clave:Chromosphere, models; Heating, chromospheric; Heating, in flares; Radio bursts, microwave; X-ray burst, spectrum; X-ray bursts, association with flares
Año:2015
Volumen:290
Número:10
Página de inicio:2809
Página de fin:2826
DOI: http://dx.doi.org/10.1007/s11207-015-0782-0
Título revista:Solar Physics
Título revista abreviado:Sol. Phys.
ISSN:00380938
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00380938_v290_n10_p2809_Trottet

Referencias:

  • Avrett, E.H., Loeser, R., Solar and stellar atmospheric modeling using the pandora computer program (2003) Modelling of Stellar Atmospheres, p. A21. , Piskunov N., Weiss W.W., Gray D.F., (eds), IAU Symp., 210
  • Avrett, E.H., Loeser, R., Models of the solar chromosphere and transition region from SUMER and HRTS observations: formation of the extreme-ultraviolet spectrum of hydrogen, carbon, and oxygen (2008) Astrophys. J. Suppl., 175, p. 229
  • Bagalá, L.G., Bauer, O.H., Fernández Borda, R., Francile, C., Haerendel, G., Rieger, R., Rovira, M.G., The new H(Formula presented.) solar telescope at the German–Argentinian solar observatory (1999) Magnetic Fields and Solar Processes, p. 469. , Wilson A., (ed), SP-448
  • Bai, T., Transport of energetic electrons in a fully ionized hydrogen plasma (1982) Astrophys. J., 259, p. 341
  • Bastian, T.S., Benz, A.O., Gary, D.E., Radio emission from solar flares (1998) Annu. Rev. Astron. Astrophys., 36, p. 131
  • Brown, J.C., The directivity and polarisation of thick target X-ray bremsstrahlung from solar flares (1972) Solar Phys., 26, p. 441
  • Butler, S.T., Buckingham, M.J., Energy loss of a fast ion in a plasma (1962) Phys. Rev., 126, p. 1
  • De la Luz, V., Lara, A., Raulin, J.-P., Synthetic spectra of radio, millimeter, sub-millimeter, and infrared regimes with non-local thermodynamic equilibrium approximation (2011) Astrophys. J., 737, p. 1
  • De la Luz, V., Lara, A., Mendoza-Torres, J.E., Selhorst, C.L., Pakal: a three-dimensional model to solve the radiative transfer equation (2010) Astrophys. J. Suppl., 188, p. 437
  • Deming, D., Jennings, D.E., Jefferies, J., Lindsey, C.: 1991, In: Cox, A.N., Livingston, W.C., Matthews, M.S. (eds.) Physics of the Infrared Spectrum, 933; Emslie, A.G., The collisional interaction of a beam of charged particles with a hydrogen target of arbitrary ionization level (1978) Astrophys. J., 224, p. 241
  • Gould, R.J., Energy loss of a relativistic ion in a plasma (1972) Physica, 58, p. 379
  • Gould, R.J., Energy loss of fast electrons and positrons in a plasma (1972) Physica, 60, p. 145
  • Guidice, D.A., Sagamore Hill Radio Observatory, Air Force Geophysics Laboratory, Hanscom air force base, Massachusetts 01731. Report (1979) Bull. Am. Astron. Soc., 11, p. 311
  • Heinzel, P., Avrett, E.H., Optical-to-radio continua in solar flares (2012) Solar Phys., 277, p. 31
  • Kaufmann, P., Levato, H., Cassiano, M.M., Correia, E., Costa, J.E.R., Giménez de Castro, C.G., Godoy, R., Zakia, M.B., New telescopes for ground-based solar observations at submillimeter and mid-infrared (2008) Soc. Photo-Optical Instr. Eng. (SPIE) Conf. Ser., p. 70120L. , 7012
  • Kaufmann, P., White, S.M., Freeland, S.L., Marcon, R., Fernandes, L.O.T., Kudaka, A.S., de Souza, R.V., Giménez de Castro, C.G., A bright impulsive solar burst detected at 30 THz (2013) Astrophys. J., 768, p. 134
  • Kaufmann, P., Marcon, R., Abrantes, A., Bortolucci, E.C., Fernandes, L.O.T., Kropotov, G.I., Kudaka, A.S., Timofeevsky, A., THz photometers for solar flare observations from space (2014) Exp. Astron., 37, p. 579
  • Kaufmann, P., White, S.M., Marcon, R., Kudaka, A.S., Cabezas, D.P., Cassiano, M.M., Francile, C., de Souza, R.V., Bright 30 THz impulsive solar bursts (2015) J. Geophys. Res., 120, p. 4155
  • Kašparová, J., Heinzel, P., Karlický, M., Moravec, Z., Varady, M., Far-IR and radio thermal continua in solar flares (2009) Cent. Eur. Astrophys. Bull., 33, p. 309
  • Kašparová, J., Varady, M., Heinzel, P., Karlický, M., Moravec, Z., Response of optical hydrogen lines to beam heating. I. Electron beams (2009) Astron. Astrophys., 499, p. 923
  • Kerr, G.S., Fletcher, L., Physical properties of white-light sources in the 2011 February 15 solar flare (2014) Astrophys. J., 783, p. 98
  • Krucker, S., Saint-Hilaire, P., Hudson, H.S., Haberreiter, M., Martinez-Oliveros, J.C., Fivian, M.D., Hurford, G., Arnold, N.G., Co-spatial white light and hard X-ray flare footpoints seen above the solar limb (2015) Astrophys. J., 802, p. 19
  • Machado, M.E., Emslie, A.G., Avrett, E.H., Radiative backwarming in white-light flares (1989) Solar Phys., 124, p. 303
  • Machado, M.E., Avrett, E.H., Vernazza, J.E., Noyes, R.W., Semiempirical models of chromospheric flare regions (1980) Astrophys. J., 242, p. 336
  • MacKinnon, A.L., Toner, M.P., Warm thick target solar gamma-ray source revisited (2003) Astron. Astrophys., 409, p. 745
  • Marcon, R., Kaufmann, P., Melo, A.M., Kudaka, A.S., Tandberg-Hanssen, E., Association of mid-infrared solar plages with calcium K line emissions and magnetic structures (2008) Publ. Astron. Soc. Pac., 120, p. 16
  • Mauas, P.J.D., Machado, M.E., Avrett, E.H., The white-light flare of 1982 June 15 – Models (1990) Astrophys. J., 360, p. 715
  • Meegan, C., Lichti, G., Bhat, P.N., Bissaldi, E., Briggs, M.S., Connaughton, V., Diehl, R., Wilson-Hodge, C., The Fermi gamma-ray burst monitor (2009) Astrophys. J., 702, p. 791
  • Metcalf, T.R., Canfield, R.C., Saba, J.L.R., Flare heating and ionization of the low solar chromosphere. II – Observations of five solar flares (1990) Astrophys. J., 365, p. 391
  • Ohki, K., Hudson, H.S., The solar-flare infrared continuum (1975) Solar Phys., 43, p. 405
  • Olive, K.A., Review of particle physics (2014) Chin. Phys. C, 38 (9). , Particle Data Group
  • Penn, M., Jennings, D., Jhabvala, M., Lunsford, A., Infrared flare observations at 5 and 10 microns (2015) AAS/AGU Triennial Earth–Sun Summit, p. 30704. , 1
  • Pick, M., Vilmer, N., Sixty-five years of solar radioastronomy: flares, coronal mass ejections and Sun Earth connection (2008) Astron. Astrophys. Rev., 16, p. 1
  • Pick, M., Klein, K.-L., Trottet, G., Meter-decimeter and microwave radio observations of solar flares (1990) Astrophys. J. Suppl., 73, p. 165
  • Ramaty, R., Gyrosynchrotron emission and absorption in a magnetoactive plasma (1969) Astrophys. J., 158, p. 753
  • Ramaty, R., Schwartz, R.A., Enome, S., Nakajima, H., Gamma-ray and millimeter-wave emissions from the 1991 June X-class solar flares (1994) Astrophys. J., 436, p. 941
  • Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., Liu, Y., Tomczyk, S., The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO) (2012) Solar Phys., 275, p. 207
  • Schwartz, R.A., Csillaghy, A., Tolbert, A.K., Hurford, G.J., McTiernan, J., Zarro, D., RHESSI data analysis software: rationale and methods (2002) Solar Phys., 210, p. 165
  • Trottet, G., Klein, K.-L., Far infrared solar physics (2013) Mem. Soc. Astron. Ital., 84, p. 405
  • Trottet, G., Vilmer, N., Barat, C., Benz, A., Magun, A., Kuznetsov, A., Sunyaev, R., Terekhov, O., A multiwavelength analysis of an electron-dominated gamma-ray event associated with a disk solar flare (1998) Astron. Astrophys., 334, p. 1099
  • Trottet, G., Rolli, E., Magun, A., Barat, C., Kuznetsov, A., Sunyaev, R., Terekhov, O., The fast and slow H(Formula presented.) chromospheric responses to non-thermal particles produced during the 1991 March 13 hard X-ray/gamma-ray flare at ˜ 08 UTC (2000) Astron. Astrophys., 356, p. 1067
  • Trottet, G., Krucker, S., Lüthi, T., Magun, A., Radio submillimeter and (Formula presented.)-ray observations of the 2003 October 28 solar flare (2008) Astrophys. J., 678, p. 509
  • Valio, A., Kaufmann, P., Giménez de Castro, C.G., Raulin, J.-P., Fernandes, L.O.T., Marun, A., POlarization Emission of Millimeter Activity at the Sun (POEMAS): new circular polarization solar telescopes at two millimeter wavelength ranges (2013) Solar Phys., 283, p. 651

Citas:

---------- APA ----------
Trottet, G., Raulin, J.-P., Mackinnon, A., Giménez de Castro, G., Simões, P.J.A., Cabezas, D., de La Luz, V.,..., Kaufmann, P. (2015) . Origin of the 30 THz Emission Detected During the Solar Flare on 2012 March 13 at 17:20 UT. Solar Physics, 290(10), 2809-2826.
http://dx.doi.org/10.1007/s11207-015-0782-0
---------- CHICAGO ----------
Trottet, G., Raulin, J.-P., Mackinnon, A., Giménez de Castro, G., Simões, P.J.A., Cabezas, D., et al. "Origin of the 30 THz Emission Detected During the Solar Flare on 2012 March 13 at 17:20 UT" . Solar Physics 290, no. 10 (2015) : 2809-2826.
http://dx.doi.org/10.1007/s11207-015-0782-0
---------- MLA ----------
Trottet, G., Raulin, J.-P., Mackinnon, A., Giménez de Castro, G., Simões, P.J.A., Cabezas, D., et al. "Origin of the 30 THz Emission Detected During the Solar Flare on 2012 March 13 at 17:20 UT" . Solar Physics, vol. 290, no. 10, 2015, pp. 2809-2826.
http://dx.doi.org/10.1007/s11207-015-0782-0
---------- VANCOUVER ----------
Trottet, G., Raulin, J.-P., Mackinnon, A., Giménez de Castro, G., Simões, P.J.A., Cabezas, D., et al. Origin of the 30 THz Emission Detected During the Solar Flare on 2012 March 13 at 17:20 UT. Sol. Phys. 2015;290(10):2809-2826.
http://dx.doi.org/10.1007/s11207-015-0782-0