Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Solar observations from millimeter to ultraviolet wavelengths show that there is a temperature minimum between photosphere and chromosphere. Analyses based on semi-empirical models locate this point at about 500 km above the photosphere. The consistency of these models has been tested by means of millimeter to infrared observations. We show that variations of the theoretical radial temperature profile near the temperature minimum impact the brightness temperature at centimeter, submillimeter, and infrared wavelengths, but the millimeter wavelength emission remains unchanged. We found a region between 500 and 1000 km above the photosphere that remains hidden to observations at the frequencies that we studied here. © 2014 Springer Science+Business Media Dordrecht.

Registro:

Documento: Artículo
Título:The Relation Between the Radial Temperature Profile in the Chromosphere and the Solar Spectrum at Centimeter, Millimeter, Submillimeter, and Infrared Wavelengths
Autor:De la Luz, V.; Chavez, M.; Bertone, E.; Gimenez de Castro, G.
Filiación:Instituto Nacional de Astrofisica, Optica y Electronica, Apdo. Postal 51 y 216, Tonantzintla, 72000 Puebla, Mexico
Centro de Rádio Astronomia e Astrofísica Mackenzie, UPM, R. da Consolação 896, 01307-902 São Paulo, SP, Brazil
Instituto de Astronomía y Física del Espacio, Ciudad Universitaria, CC 25, 1428 Buenos Aires, Argentina
Palabras clave:Methods: numerical; Radiative transfer; Stars: chromospheres; Sun: chromosphere; Sun: infrared; Sun: radio radiation
Año:2014
Volumen:289
Número:8
Página de inicio:2879
Página de fin:2889
DOI: http://dx.doi.org/10.1007/s11207-014-0511-0
Título revista:Solar Physics
Título revista abreviado:Sol. Phys.
ISSN:00380938
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00380938_v289_n8_p2879_DelaLuz

Referencias:

  • Athay, R.G., Thomas, R.N., (1961) Physics of the Solar Chromosphere, , Wiley-Interscience. 1961psc. book. A
  • Avrett, E.H., The solar temperature minimum and chromosphere (2003) Current Theoretical Models and Future High Resolution Solar Observations: Preparing for ATST, CS-286, 419. , Astronom. Soc. Pacific, A. A. Pevtsov and H. Uitenbroek (Eds.)
  • Avrett, E.H., Loeser, R., Models of the solar chromosphere and transition region from SUMER and HRTS observations: formation of the extreme-ultraviolet spectrum of hydrogen, carbon, and oxygen (2008) Astrophys. J. Suppl., 175, p. 229. , doi:10.1086/523671
  • Ayres, T.R., Center-to-limb behavior of first-overtone vibration-rotation transitions of solar carbon monoxide (1978) Astrophys. J., 225, p. 665. , doi:10.1086/156527
  • de la Luz, V., Lara, A., Raulin, J.-P., Synthetic spectra of radio, millimeter, sub-millimeter, and infrared regimes with non-local thermodynamic equilibrium approximation (2011) Astrophys. J., 737, p. 1. , doi:10.1088/0004-637X/737/1/1
  • de la Luz, V., Raulin, J.-P., Lara, A., The chromospheric solar millimeter-wave cavity originates in the temperature minimum region (2013) Astrophys. J., 762, p. 84. , doi:10.1088/0004-637X/762/2/84
  • de la Luz, V., Lara, A., Mendoza-Torres, J.E., Selhorst, C.L., Pakal: a three-dimensional model to solve the radiative transfer equation (2010) Astrophys. J. Suppl., 188, p. 437. , doi:10.1088/0067-0049/188/2/437
  • Fontenla, J.M., Peterson, W.K., Harder, J., Chromospheric heating by the Farley-Buneman instability (2008) Astron. Astrophys., 480, p. 839. , doi:10.1051/0004-6361:20078517
  • Fontenla, J.M., Avrett, E., Thuillier, G., Harder, J., Semiempirical models of the solar atmosphere. I. The quiet- and active sun photosphere at moderate resolution (2006) Astrophys. J., 639, p. 441. , doi:10.1086/499345
  • Fontenla, J.M., Harder, J., Livingston, W., Snow, M., Woods, T., High-resolution solar spectral irradiance from extreme ultraviolet to far infrared (2011) J. Geophys. Res., Atmos., 116, p. 20108. , doi:10.1029/2011JD016032
  • Golovinskii, P.A., Zon, B.A., Bremsstrahlung during collision of electrons with negative ions (1980) Zhu. Tekhnich. Fiz., 50, p. 1847
  • Hagen, J.P., The structure of the solar chromosphere from centimetre-wave radio observations (1957) Radio Astronomy, IAU Symp., 4. , In: van de Hulst, H. C. (ed.), Cambridge University Press 263. 1957IAUS. 4. 263H
  • Kurucz, R.L., Model atmospheres for G, F, A, B, and O stars (1979) Astrophys. J. Suppl., 40, p. 1. , doi:10.1086/190589
  • Liseau, R., Montesinos, B., Olofsson, G., Bryden, G., Marshall, J.P., Ardila, D., Bayo Aran, A., White, G.J., α Centauri A in the far infrared. First measurement of the temperature minimum of a star other than the Sun (2013) Astron. Astrophys., 549, pp. L7. , doi:10.1051/0004-6361/201220776
  • Loukitcheva, M., Solanki, S.K., Carlsson, M., Stein, R.F., Millimeter observations and chromospheric dynamics (2004) Astron. Astrophys., 419, p. 747. , doi:10.1051/0004-6361:20034159
  • Patsourakos, S., Gouttebroze, P., Vourlidas, A., The quiet sun network at subarcsecond resolution: VAULT observations and radiative transfer modeling of cool loops (2007) Astrophys. J., 664, p. 1214. , doi:10.1086/518645
  • Shibasaki, K., Alissandrakis, C.E., Pohjolainen, S., Radio emission of the quiet sun and active regions (Invited review) (2011) Solar Phys., 273, p. 309. , doi:10.1007/s11207-011-9788-4
  • Uitenbroek, H., The CO fundamental vibration-rotation lines in the solar spectrum. II. Non-LTE transfer modeling in static and dynamic atmospheres (2000) Astrophys. J., 536, p. 481. , doi:10.1086/308933
  • Vernazza, J.E., Avrett, E.H., Loeser, R., Structure of the solar chromosphere. Basic computations and summary of the results (1973) Astrophys. J., 184, p. 605
  • Vernazza, J.E., Avrett, E.H., Loeser, R., Structure of the solar chromosphere. III. Models of the EUV brightness components of the quiet-sun (1981) Astrophys. J. Suppl., 45, p. 635. , doi:10.1086/190731
  • Vourlidas, A., Sanchez Andrade-Nuño, B., Landi, E., Patsourakos, S., Teriaca, L., Schühle, U., Korendyke, C.M., Nestoras, I., The structure and dynamics of the upper chromosphere and lower transition region as revealed by the subarcsecond VAULT observations (2010) Solar Phys., 261, p. 53. , doi:10.1007/s11207-009-9475-x
  • Zheleznyakov, V.V., Radiation in astrophysical plasmas (1996) Astrophys. Space Sci., , (ed.): Libr. 204. 1996ASSL. 204. Z

Citas:

---------- APA ----------
De la Luz, V., Chavez, M., Bertone, E. & Gimenez de Castro, G. (2014) . The Relation Between the Radial Temperature Profile in the Chromosphere and the Solar Spectrum at Centimeter, Millimeter, Submillimeter, and Infrared Wavelengths. Solar Physics, 289(8), 2879-2889.
http://dx.doi.org/10.1007/s11207-014-0511-0
---------- CHICAGO ----------
De la Luz, V., Chavez, M., Bertone, E., Gimenez de Castro, G. "The Relation Between the Radial Temperature Profile in the Chromosphere and the Solar Spectrum at Centimeter, Millimeter, Submillimeter, and Infrared Wavelengths" . Solar Physics 289, no. 8 (2014) : 2879-2889.
http://dx.doi.org/10.1007/s11207-014-0511-0
---------- MLA ----------
De la Luz, V., Chavez, M., Bertone, E., Gimenez de Castro, G. "The Relation Between the Radial Temperature Profile in the Chromosphere and the Solar Spectrum at Centimeter, Millimeter, Submillimeter, and Infrared Wavelengths" . Solar Physics, vol. 289, no. 8, 2014, pp. 2879-2889.
http://dx.doi.org/10.1007/s11207-014-0511-0
---------- VANCOUVER ----------
De la Luz, V., Chavez, M., Bertone, E., Gimenez de Castro, G. The Relation Between the Radial Temperature Profile in the Chromosphere and the Solar Spectrum at Centimeter, Millimeter, Submillimeter, and Infrared Wavelengths. Sol. Phys. 2014;289(8):2879-2889.
http://dx.doi.org/10.1007/s11207-014-0511-0