Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The solar wind is a structured and complex system, in which the fields vary strongly over a wide range of spatial and temporal scales. As an example, the turbulent activity in the wind affects the evolution in the heliosphere of the integral turbulent scale or correlation length [λ], usually associated with the breakpoint in the turbulent-energy spectrum that separates the inertial range from the injection range. This large variability of the fields demands a statistical description of the solar wind. We study the probability distribution function (PDF) of the magnetic-autocorrelation lengths observed in the solar wind at different distances from the Sun. We used observations from the Helios, ACE, and Ulysses spacecraft. We distinguished between the usual solar wind and one of its transient components (interplanetary coronal mass ejections, ICMEs), and also studied solar-wind samples with low and high proton beta [βp]. We find that in the last three regimes the PDF of λ is a log-normal function, consistent with the multiplicative and nonlinear processes that take place in the solar wind, the initial λ (before the Alfvénic point) being larger in ICMEs. © 2014 Springer Science+Business Media Dordrecht.

Registro:

Documento: Artículo
Título:Characterization of the Turbulent Magnetic Integral Length in the Solar Wind: From 0.3 to 5 Astronomical Units
Autor:Ruiz, M.E.; Dasso, S.; Matthaeus, W.H.; Weygand, J.M.
Filiación:Instituto de Astronomía y Física del Espacio (CONICET-UBA), CC 67, Suc. 28, 1428 Buenos Aires, Argentina
Departamento de Física, UBA, Pabellón 1, 1428 Buenos Aires, Argentina
Departamento de Ciencias de la Atmósfera y los Océanos, UBA, Pabellón 2, 1428 Buenos Aires, Argentina
Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark, DE, United States
Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA, United States
Palabras clave:Coronal mass ejections, interplanetary; Magnetic fields, interplanetary; Magnetohydrodynamics; Solar wind, theory; Turbulence
Año:2014
Volumen:289
Número:10
Página de inicio:3917
Página de fin:3933
DOI: http://dx.doi.org/10.1007/s11207-014-0531-9
Título revista:Solar Physics
Título revista abreviado:Sol. Phys.
ISSN:00380938
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00380938_v289_n10_p3917_Ruiz

Referencias:

  • Altschuler, M.D., Trotter, D.E., Orrall, F.Q., (1972) Solar Phys., 26, p. 354. , doi:10.1007/BF00165276
  • Bale, S.D., Kasper, J.C., Howes, G.G., Quataert, E., Salem, C., Sundkvist, D., (2009) Phys. Rev. Lett., 103 (21). , 211101, doi:10.1103/PhysRevLett.103.211101
  • Batchelor, G.K., (1953) The Theory of Homogeneous Turbulence, , Cambridge: Cambridge Univ. Press
  • Bavassano, B., Dobrowolny, M., Mariani, F., Ness, N.F., (1982) J. Geophys. Res., 87, p. 3617. , doi:10.1029/JA087iA05p03617
  • Belcher, J.W., Davis Jr., L., (1971) J. Geophys. Res., 76, p. 3534. , doi:10.1029/JA076i016p03534
  • Bruno, R., Carbone, V., (2013) Living Rev. Solar Phys., 10, p. 2. , doi:10.12942/lrsp-2013-2
  • Bruno, R., Carbone, V., Bavassano, B., Sorriso-Valvo, L., (2005) Adv. Space Res., 35, p. 939. , doi:10.1016/j.asr.2005.01.106
  • Bruno, R., Carbone, V., Vörös, Z., D'Amicis, R., Bavassano, B., Cattaneo, M.B., Mura, A., Kovács, P., (2009) Earth Moon Planets, 104, p. 101. , doi:10.1007/s11038-008-9272-9
  • Burlaga, L.F., Lazarus, A.J., (2000) J. Geophys. Res., 105, p. 2357. , doi:10.1029/1999JA900442
  • Burlaga, L.F., Ness, N.F., (1998) J. Geophys. Res., 103, p. 29719. , doi:10.1029/98JA02682
  • Campbell, W.H., (1996) J. Atmos. Solar-Terr. Phys., 58, p. 1171
  • Coleman Jr., P.J., (1968) Astrophys. J., 153, p. 371. , doi:10.1086/149674
  • D'Amicis, R., Bruno, R., Pallocchia, G., Bavassano, B., Telloni, D., Carbone, V., Balogh, A., (2010) Astrophys. J., 717, p. 474. , doi:10.1088/0004-637X/717/1/474
  • Dasso, S., Gratton, F.T., Farrugia, C.J., (2003) J. Geophys. Res., 108, p. 1149. , doi:10.1029/2002JA009558
  • Dasso, S., Milano, L.J., Matthaeus, W.H., Smith, C.W., (2005) Astrophys. J., 635, pp. L181. , doi:10.1086/499559
  • Dasso, S., Mandrini, C.H., Démoulin, P., Luoni, M.L., Gulisano, A.M., (2005) Adv. Space Res., 35, p. 711. , doi:10.1016/j.asr.2005.02.096
  • Démoulin, P., (2009) Solar Phys., 257, p. 169. , doi:10.1007/s11207-009-9338-5
  • Démoulin, P., Dasso, S., (2009) Astron. Astrophys., 498, p. 551. , doi:10.1051/0004-6361/200810971
  • Frodesen, A.G., Skjeggestad, O., Tofte, H., (1979) Probability and Statistics in Particle Physics, , Bergen: Universitetsforl
  • Goldstein, M.L., Roberts, D.A., Matthaeus, W.H., (1995) Annu. Rev. Astron. Astrophys., 33, p. 283. , doi:10.1146/annurev.aa.33.090195.001435
  • Gulisano, A.M., Démoulin, P., Dasso, S., Ruiz, M.E., Marsch, E., (2010) Astron. Astrophys., 509, pp. A39. , doi:10.1051/0004-6361/200912375
  • Gulisano, A.M., Démoulin, P., Dasso, S., Rodriguez, L., (2012) Astron. Astrophys., 543, pp. A107. , doi:10.1051/0004-6361/201118748
  • Horbury, T.S., Balogh, A., Forsyth, R.J., Smith, E.J., (1995) Geophys. Res. Lett., 22, p. 3401. , doi:10.1029/95GL03550
  • Horbury, T.S., Balogh, A., Forsyth, R.J., Smith, E.J., (1996) Astron. Astrophys., 316, p. 333
  • Jarque, C.M., Bera, A.K., (1980) Econ. Lett., 6 (3), p. 255
  • Klein, L.W., Matthaeus, W.H., Roberts, D.A., Goldstein, M.L., (1992) Solar Wind Seven, p. 197. , COSPAR Conf. Ser, E. Marsch and R. Schwenn (Eds.), Oxford: Pergamon
  • Lepping, R.P., Berdichevsky, D.B., Szabo, A., Arqueros, C., Lazarus, A.J., (2003) Solar Phys., 212, p. 425. , doi:10.1023/A:1022938903870
  • Limpert, E., Stahel, W.A., Abbt, M., (2001) Bioscience, 51 (5), p. 341
  • Lopez, R.E., Freeman, J.W., (1986) J. Geophys. Res., 91, p. 1701. , doi:10.1029/JA091iA02p01701
  • Mariani, F., Neubauer, F.M., (1990) The Interplanetary Magnetic Field, p. 183. , R. Schwenn and E. Marsch (Eds.), Berlin: Springer
  • Matthaeus, W.H., Goldstein, M.L., (1982) J. Geophys. Res., 87, p. 10347. , doi:10.1029/JA087iA12p10347
  • Matthaeus, W.H., Goldstein, M.L., (1986) Phys. Rev. Lett., 57, p. 495. , doi:10.1103/PhysRevLett.57.495
  • Matthaeus, W.H., Goldstein, M.L., Roberts, D.A., (1990) J. Geophys. Res., 95, p. 20673
  • Matthaeus, W.H., Smith, C.W., Bieber, J.W., (1999), In: Suess, S. T., Gary, G. A., Nerney, S. F. (eds.) CS-471, AIP, 511. 10. 1063/1. 58686; Matthaeus, W.H., Velli, M., (2011) Space Sci. Rev., 160, p. 145. , doi:10.1007/s11214-011-9793-9
  • Matthaeus, W.H., Oughton, S., Pontius Jr., D.H., Zhou, Y., (1994) J. Geophys. Res., 99, p. 19267. , doi:10.1029/94JA01233
  • Matthaeus, W.H., Dasso, S., Weygand, J.M., Milano, L.J., Smith, C.W., Kivelson, M.G., (2005) Phys. Rev. Lett., 95 (23). , 231101, doi:10.1103/PhysRevLett.95.231101
  • Matthaeus, W.H., Weygand, J.M., Chuychai, P., Dasso, S., Smith, C.W., Kivelson, M.G., (2008) Astrophys. J. Lett., 678, pp. L141. , doi:10.1086/588525
  • McComas, D.J., Elliott, H.A., Schwadron, N.A., Gosling, J.T., Skoug, R.M., Goldstein, B.E., (2003) Geophys. Res. Lett., 30, p. 1517. , doi:10.1029/2003GL017136
  • Milano, L.J., Dasso, S., Matthaeus, W.H., Smith, C.W., (2004) Phys. Rev. Lett., 93 (15). , 155005, doi:10.1103/PhysRevLett.93.155005
  • Montroll, E.W., Shlesinger, M.F., (1982) Proc. Natl. Acad. Sci., 79, p. 3380. , doi:10.1073/pnas.79.10.3380
  • Mood, A.M., Graybill, F.A., Boes, D.C., (1974) Introduction to the Theory of Statistics, , 3rd edn., New York: McGraw-Hill
  • Mullan, D.J., Smith, C.W., (2006) Solar Phys., 234, p. 325. , doi:10.1007/s11207-006-2077-y
  • Neugebauer, M., Goldstein, R., (1997) Coronal Mass Ejections, 99, p. 245. , AGU. Geophys. Monograph10.1029/GM099p0245, N. Crooker, J. A. Joselyn, and J. Feynman (Eds.)
  • Oughton, S., Dmitruk, P., Matthaeus, W.H., (2006) Phys. Plasmas, 13 (4). , 042306, doi:10.1063/1.2188088
  • Padhye, N.S., Smith, C.W., Matthaeus, W.H., (2001) J. Geophys. Res., 106, p. 18635. , doi:10.1029/2000JA000293
  • Richardson, I.G., Cane, H.V., (1995) J. Geophys. Res., 100, p. 23397. , doi:10.1029/95JA02684
  • Ruiz, M.E., Dasso, S., Matthaeus, W.H., Marsch, E., Weygand, J.M., (2011) J. Geophys. Res., 116, p. 10102. , doi:10.1029/2011JA016697
  • Smith, C.W., Matthaeus, W.H., Zank, G.P., Ness, N.F., Oughton, S., Richardson, J.D., (2001) J. Geophys. Res., 106, p. 8253. , doi:10.1029/2000JA000366
  • Taylor, G.I., (1938) Proc. Roy. Soc. London Ser. A, 164, p. 476
  • Thadewald, T., Büning, H., (2007) J. Appl. Stat., 34 (1), p. 87
  • Tu, C.-Y., Marsch, E., (1995) MHD Structures, Waves and Turbulence in the Solar Wind: Observations and Theories, , Belgium: Kluwer
  • Tu, C.-Y., Pu, Z.-Y., Wei, F.-S., (1984) J. Geophys. Res., 89, p. 9695. , doi:10.1029/JA089iA11p09695
  • von Kármán, T., Howarth, L., (1938) Proc. Roy. Soc. London Ser. A, 164, p. 192. , doi:10.1098/rspa.1938.0013
  • Wicks, R.T., Owens, M.J., Horbury, T.S., (2010) Solar Phys., 262, p. 191

Citas:

---------- APA ----------
Ruiz, M.E., Dasso, S., Matthaeus, W.H. & Weygand, J.M. (2014) . Characterization of the Turbulent Magnetic Integral Length in the Solar Wind: From 0.3 to 5 Astronomical Units. Solar Physics, 289(10), 3917-3933.
http://dx.doi.org/10.1007/s11207-014-0531-9
---------- CHICAGO ----------
Ruiz, M.E., Dasso, S., Matthaeus, W.H., Weygand, J.M. "Characterization of the Turbulent Magnetic Integral Length in the Solar Wind: From 0.3 to 5 Astronomical Units" . Solar Physics 289, no. 10 (2014) : 3917-3933.
http://dx.doi.org/10.1007/s11207-014-0531-9
---------- MLA ----------
Ruiz, M.E., Dasso, S., Matthaeus, W.H., Weygand, J.M. "Characterization of the Turbulent Magnetic Integral Length in the Solar Wind: From 0.3 to 5 Astronomical Units" . Solar Physics, vol. 289, no. 10, 2014, pp. 3917-3933.
http://dx.doi.org/10.1007/s11207-014-0531-9
---------- VANCOUVER ----------
Ruiz, M.E., Dasso, S., Matthaeus, W.H., Weygand, J.M. Characterization of the Turbulent Magnetic Integral Length in the Solar Wind: From 0.3 to 5 Astronomical Units. Sol. Phys. 2014;289(10):3917-3933.
http://dx.doi.org/10.1007/s11207-014-0531-9