Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Three-dimensional (3D) tomographic analysis of extreme ultraviolet (EUV) images is used to place empirical constraints on the corona's temperature and density structure. The input data are images taken by the EUVI instrument on STEREO A and B spacecraft for Carrington Rotation 2069 (16 April to 13 May 2008). While the reconstructions are global, we demonstrate the capabilities of this method by examining specific structures in detail. Of particular importance are the results for coronal cavities and the surrounding helmet streamers, which our method allows to be analyzed without projection effects for the first time. During this rotation, both the northern and southern hemispheres exhibited stable polar crown filaments with overlying EUV cavities. These filaments and cavities were too low-lying to be well observed in white-light coronagraphs. Furthermore, due to projection effects, these cavities were not clearly discernible above the limb in EUV images, thus tomography offers the only option to study their plasma properties quantitatively. It is shown that, when compared to the surrounding helmet material, these cavities have lower densities (about 30%, on average) and broader local differential emission measures that are shifted to higher temperatures than the surrounding streamer plasma. © 2009 Springer Science+Business Media B.V.

Registro:

Documento: Artículo
Título:3D temperatures and densities of the solar corona via multi-spacecraft EUV tomography: Analysis of prominence cavities
Autor:Vásquez, A.M.; Frazin, R.A.; Kamalabadi, F.
Filiación:Instituto de Astronomía y Física Del Espacio, CONICET-University of Buenos Aires, Ciudad de Buenos Aires CC 67, Suc 28, Argentina
Dept. of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109, United States
Dept. of Electrical and Computer Engineering, University of Illinois, Urbana, IL 61801, United States
Palabras clave:Coronal cavities; Differential emission measure; Electron density; EUV imaging; Filaments; Solar corona; STEREO mission; Tomography
Año:2009
Volumen:256
Número:1-2
Página de inicio:73
Página de fin:85
DOI: http://dx.doi.org/10.1007/s11207-009-9321-1
Título revista:Solar Physics
Título revista abreviado:Sol. Phys.
ISSN:00380938
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00380938_v256_n1-2_p73_Vasquez

Referencias:

  • An, C.-H., Suess, S.T., Tandberg-Hanssen, E., (1985) Solar Phys., 102, p. 165
  • Arnaud, M., Raymond, J.C., (1992) Astrophys. J., 398, p. 39
  • Aschwanden, M.J., (2004) Physics of the Solar Corona: An Introduction, , Praxis Publishing Ltd Chichester
  • Aschwanden, M.J., Nightingale, R.W., Boerner, P., (2007) Astrophys. J., 656, p. 577
  • Aschwanden, M.J., Nitta, N.V., Wülser, J.P., Lemen, J.R., (2008) Astrophys. J., 679, p. 827
  • Babcock, H.W., Babcock, H.D., (1955) Astrophys. J., 121, p. 349
  • Barbey, N., Auchère, F., Rodet, T., Vial, J.-C., (2008) Solar Phys., 248, p. 409
  • Butala, M.D., Kamalabadi, F., Frazin, R.A., Chen, Y., (2008) IEEE J. Sel. Top. Signal Process., 2, p. 75
  • Craig, I.J.D., Brown, J.C., (1986) Inverse Problems in Astronomy, , Hilger Bristol
  • Demoment, G., (1989) IEEE Trans. Acoust. Speech Signal Process., 7 (2), p. 204
  • Feldman, U., Mandelbaum, P., Seely, J.L., Doschek, G.A., Gursky, H., (1992) Astrophys. J. Suppl. Ser., 81, p. 387
  • Feng, L., Inhester, B., Solanki, S.K., Wiegelmann, T., Podipnik, B., Howard, R.A., Wülser, J.-P., (2007) Astrophys. J., 671, p. 205
  • Frazin, R.A., Janzen, P., (2002) Astrophys. J., 570, p. 408
  • Frazin, R.A., Kamalabadi, F., (2005) Solar Phys., 228, p. 21
  • Frazin, R.A., Kamalabadi, F., Weber, M.A., (2005) Astrophys. J., 628, p. 1070
  • Frazin, R.A., Butala, M.D., Kemball, A., Kamalabadi, F., (2005) Astrophys. J., 635, p. 197
  • Frazin, R.A., Vásquez, A.M., Kamalabadi, F., Park, H., (2007) Astrophys. J., 671, p. 201
  • Fuller, J., Gibson, S.E., De Toma, G., Fan, Y., (2008) Astrophys. J., 678, p. 515
  • Gibson, S.E., Foster, D., Burkepile, J., De Toma, G., Stanger, A., (2006) Astrophys. J., 641, p. 590
  • Gissot, S.F., Hochedez, J.-F., Chainais, P., Antoine, J.-P., (2008) Solar Phys., 252, p. 397
  • Golub, G.H., Health, M., Wahba, G., (1979) Technometrics, 21 (2), p. 215
  • Grevesse, N., Sauval, A.J., (1998) Space Sci. Rev., 85, p. 16
  • Howard, R.A., Moses, J.D., Vourlidas, A., Newmark, J.S., Socker, D.G., Plunkett, S.P., (2008) Space Sci. Rev., 136, p. 67
  • Hudson, H.S., Acton, L.W., Harvey, K.L., McKenzie, D.E., (1999) Astrophys. J., 513, p. 83
  • Illing, R.M.E., Hundhausen, A.J., (1985) J. Geophys. Res., 90, p. 275
  • Kaiser, M.L., Kucera, T.A., Davila, J.M., St. Cyr, O.C., Guhathakurta, M., Christian, E., (2008) Space Sci. Rev., 136, p. 5
  • Marqué, C., (2004) Astrophys. J., 602, p. 1037
  • Mihalas, D., (1978) Stellar Atmospheres, , Freeman New York
  • Pneuman, G.W., (1972) Solar Phys., 177, p. 793
  • Raymond, J.C., Kohl, J.L., Noci, G., Antonucci, E., Tondello, G., Huker, M.C.E., (1997) Solar Phys., 175, p. 64
  • Schmelz, J.T., Kashyap, V.L., Weber, M.A., (2007) Astrophys. J., 660, p. 157
  • Schrijver, C.J., McMullen, R.A., (2000) Astrophys. J., 531, p. 1121
  • Schrijver, C.J., Van Den Oord, G.H.J., Mewe, R., (1994) Astron. Astrophys., 289, p. 23
  • St. Cyr, O.C., Webb, D.F., (1991) Solar Phys., 136, p. 379
  • Vaiana, G.S., Krieger, A.S., Timothy, A.F., (1973) Solar Phys., 32, p. 81
  • Vásquez, A.M., Raymond, J.C., (2005) Astrophys. J., 619, p. 1132
  • Weber, M.A., Deluca, E.E., Golub, L., Sette, A.L., Stepanov, A.V., Benevolenskaya, E.E., Kosovichev, A.G., (2004) Multi-Wavelength Investigations of Solar Activity Proc. IAU Symp. 223, p. 321. , Cambridge University Press Cambridge
  • Wolfson, R., Saran, S., (1998) Astrophys. J., 499, p. 496
  • Young, P.R., Del Zanna, G., Landi, E., Dere, K.P., Mason, H.E., Landini, M., (2003) Astrophys. J. Suppl. Ser., 144, p. 135
  • Zhang, J., White, S.M., Kundu, M.R., (1999) Astrophys. J., 527, p. 977

Citas:

---------- APA ----------
Vásquez, A.M., Frazin, R.A. & Kamalabadi, F. (2009) . 3D temperatures and densities of the solar corona via multi-spacecraft EUV tomography: Analysis of prominence cavities. Solar Physics, 256(1-2), 73-85.
http://dx.doi.org/10.1007/s11207-009-9321-1
---------- CHICAGO ----------
Vásquez, A.M., Frazin, R.A., Kamalabadi, F. "3D temperatures and densities of the solar corona via multi-spacecraft EUV tomography: Analysis of prominence cavities" . Solar Physics 256, no. 1-2 (2009) : 73-85.
http://dx.doi.org/10.1007/s11207-009-9321-1
---------- MLA ----------
Vásquez, A.M., Frazin, R.A., Kamalabadi, F. "3D temperatures and densities of the solar corona via multi-spacecraft EUV tomography: Analysis of prominence cavities" . Solar Physics, vol. 256, no. 1-2, 2009, pp. 73-85.
http://dx.doi.org/10.1007/s11207-009-9321-1
---------- VANCOUVER ----------
Vásquez, A.M., Frazin, R.A., Kamalabadi, F. 3D temperatures and densities of the solar corona via multi-spacecraft EUV tomography: Analysis of prominence cavities. Sol. Phys. 2009;256(1-2):73-85.
http://dx.doi.org/10.1007/s11207-009-9321-1