Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

New results concerning prominence observations and in particular the prominence-corona transition region (PCTR) are presented. In order to cover a temperature range from 2 × 104 to 7 × 105 K, several emission lines in many different ionization states were observed with SUMER and CDS on board SOHO. EM and DEM were measured through the whole PCTR. We compared the prominence DEM with the DEM from other solar structures (active region, coronal hole and the chromosphere-corona transition region (CCTR)). We notice a displacement of the prominence DEM minimum towards lower temperatures with respect to the minimum of the other structures. Electron density and pressure diagnostics have been made from the observed C III lines. Local electron density and pressure for T ∼ 7 × 104 K are respectively log Ne = 9.30-0.34+0.30 and 0.0405-0.014+0.012. Extrapolations over the entire PCTR temperature range are in good agreement with previous SOHO results (Madjarska et al., 1999). We also provide values of electron density and pressure in two different regions of the prominence (center and edge). The Doppler velocity in the PCTR shows a trend to increase with temperature (at least up to 30 km s -1 at T ∼ 7 × 104 K), an indication of important mass flows. A simple morphological model is proposed from density and motion diagnostics. If the prominence is taken as a magnetic flux tube, one can derive an opening of the field lines with increasing temperature. If the prominence is represented as a collection of threads, their number increases with temperature from 20 to 800. Derived filling factors can reach values as low as 10 -3 for a layer thickness of the order of 5000 km. The variation of non-thermal velocities is determined for the first time, in the temperature range from 2 × 104 to 7 × 105 K. The quite clear similarity with the CCTR non-thermal velocities would indicate that heating mechanisms in the PCTR could be the same as in the CCTR (wave propagation, turbulence MHD). © 2004 Kluwer Academic Publishers.

Registro:

Documento: Artículo
Título:Prominence-corona transition region plasma diagnostics from SOHO observations
Autor:Cirigliano, D.; Vial, J.-C.; Rovira, M.
Filiación:Institut d'Astrophysique Spatiale, Batiment 121, Campus Universitaire Paris-Sud, 91405 Orsay Cedex, France
Inst. Astronomia Y Fis. del Espacio, C.C. 67, Suc 28, (1428) Ciudad de Buenos Aires, Argentina
Año:2004
Volumen:223
Número:1-2
Página de inicio:95
Página de fin:118
DOI: http://dx.doi.org/10.1007/s11207-004-5101-0
Título revista:Solar Physics
Título revista abreviado:Sol. Phys.
ISSN:00380938
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00380938_v223_n1-2_p95_Cirigliano

Referencias:

  • Arnaud, M., Rothenflug, R., (1985) Astron. Astrophys. Suppl. Ser., 60, p. 425
  • Bommier, V., Landi Degl'Innocenti, E., Leroy, J.-L., Sahal-Brechot, S., (1994) Solar Phys., 154, p. 231
  • Chae, J., Schühle, U., Lemaire, P., (1998) Astrophys. J., 505, p. 957
  • Chiuderi, C., Chiuderi-Drago, F., (1991) Solar Phys., 132, p. 81
  • Chiuderi-Drago, F., Engvold, O., Jensen, E., (1992) Solar Phys., 139, p. 47
  • Curdt, W., Brekke, P., Feldman, U., Wilhelm, K., Dwivedi, B.N., (2001) Astron. Astrophys., 375, p. 591
  • David, C., Gabriel, A.H., Bely-Dubau, F., (1997) ESA SP-404: Fifth SOHO Workshop: The Corona and Solar Wind Near Minimum Activity, p. 313. , http://www.medoc-ias.u-psud.fr/science/david
  • De Boer, C.R., Stellmacher, G., Wiehr, E., (1998) Astron. Astrophys., 334, p. 280
  • Del Zanna, G., Mason, H.E., (2003) Astron. Astrophys., 406, p. 1089
  • Del Zanna, G., Bromage, B.J.I., Landi, E., Landini, M., (2001) Astron. Astrophys., 379, p. 708
  • Dere, K.P., Landi, E., Mason, H.E., Monsignori Fossi, B.C., Young, P.R., (1997) Astron. Astrophys., 125, p. 149
  • Dupree, A.K., Foukal, P.V., Jordan, C., (1976) Astrophys. J., 209, p. 621
  • Engvold, O., (1988) Solar and Stellar Coronal Structure and Dynamics, p. 151
  • Engvold, O., (1989) ASSL Vol. 150: Dynamics and Structure of Quiescent Solar Prominences, 150, p. 47
  • Feldman, U., Mandelbaum, P., Seely, J.F., Doschek, G.A., Gursky, H., (1992) Astrophys. J. Suppl., 81, p. 387
  • Fontenla, J.M., Rovira, M., Vial, J.-C., Gouttebroze, P., (1996) Astrophys. J., 466, p. 496
  • Harrison, R.A., Sawyer, E.C., Carter, M.K., Cruise, A.M., (1995) Solar Phys., 162, p. 233
  • Lemaire, P., Wilhelm, K., Curdt, W., Schühle, U., (1997) Solar Phys., 170, p. 105
  • Leroy, J.L., (1988) Solar and Stellar Coronal Structure and Dynamics, Proceedings of the Ninth Sacramento Peak Summer Symposium, Sunspot, NM, National Solar Observatory, p. 422
  • Madjarska, M.S., Vial, J.-C., Bocchialini, K., Dermendjiev, V.N., (1999) ESA SP-446: 8th SOHO Workshop: Plasma Dynamics and Diagnostics in the Solar Transition Region and Corona, p. 467
  • Mein, P., Mein, N., (1991) Solar Phys., 136, p. 317
  • Munro, R.H., Dupree, A.K., Withbroe, G.L., (1971) Solar Phys., 19, p. 347
  • Orrall, F.Q., Schmahl, E.J., (1976) Solar Phys., 50, p. 364
  • Patsourakos, S., Vial, J., (2002) Solar Phys., 208, p. 253
  • Pauluhn, A., Lang, J., Schühle, U., Solanki, S.K., (2002) ESA SP-508: from Solar Min to Max: Half a Solar Cycle with SOHO, p. 223
  • Pneuman, G.W., Kopp, R.A., (1978) Solar Phys., 57, p. 49
  • Ruždjak, V., Tandberg-Hanssen, E., (1990) Dynamics of Quiescent Prominences; Proceedings of the 117th Colloquium of IAU
  • Schmahl, E.J., Orrall, F.Q., (1986) Coronal and Prominence Plasmas, p. 127
  • Stellmacher, G., Wiehr, E., Dammasch, I.E., (2003) Solar Phys., 217, p. 133
  • Tandberg-Hanssen, E., (1995) The Nature of Solar Prominences, , Astrophysics and Space Science Library, Dordrecht: Kluwer Academic Publishers
  • Wilhelm, K., Curdt, W., Marsch, E., Schühle, U., Lemaire, P., (1995) Solar Phys., 162, p. 189
  • Zirker, J.B., Koutchmy, S., (1991) Solar Phys., 131, p. 107

Citas:

---------- APA ----------
Cirigliano, D., Vial, J.-C. & Rovira, M. (2004) . Prominence-corona transition region plasma diagnostics from SOHO observations. Solar Physics, 223(1-2), 95-118.
http://dx.doi.org/10.1007/s11207-004-5101-0
---------- CHICAGO ----------
Cirigliano, D., Vial, J.-C., Rovira, M. "Prominence-corona transition region plasma diagnostics from SOHO observations" . Solar Physics 223, no. 1-2 (2004) : 95-118.
http://dx.doi.org/10.1007/s11207-004-5101-0
---------- MLA ----------
Cirigliano, D., Vial, J.-C., Rovira, M. "Prominence-corona transition region plasma diagnostics from SOHO observations" . Solar Physics, vol. 223, no. 1-2, 2004, pp. 95-118.
http://dx.doi.org/10.1007/s11207-004-5101-0
---------- VANCOUVER ----------
Cirigliano, D., Vial, J.-C., Rovira, M. Prominence-corona transition region plasma diagnostics from SOHO observations. Sol. Phys. 2004;223(1-2):95-118.
http://dx.doi.org/10.1007/s11207-004-5101-0