Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The scenario of magnetohydrodynamic turbulence in connection with coronal active regions has been actively investigated in recent years. According to this viewpoint, a turbulent regime is driven by footpoint motions and the incoming energy is efficiently transferred to small scales due to a direct energy cascade. The development of fine scales to enhance the dissipation of either waves or DC currents is therefore a natural outcome of turbulent models. Numerical integrations of the reduced magnetohydrodynamic equations are performed to simulate the dynamics of coronal loops driven at their bases by footpoint motions. These simulations show that a stationary turbulent regime is reached after a few photospheric times, displaying a broadband power spectrum and a dissipation rate consistent with the energy loss rates of the plasma confined in these loops. Also, the functional dependence of the stationary heating rate with the physical parameters of the problem is obtained, which might be useful for an observational test of this theoretical framework.

Registro:

Documento: Artículo
Título:Recent theoretical results on coronal heating
Autor:Gomez, D.O.; Dmitruk, P.A.; Milano, L.J.
Filiación:Department of Physics, University of Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina
National Solar Observatory, P.O. Box 62, Sunspot, NM 88349, United States
Inst. Astronomia y Fis. del Espacio, C.C.67, 1428 Buenos Aires, Argentina
Bartol Research Institute, University of Delaware, Newark, DE 19716, United States
Año:2000
Volumen:195
Número:2
Página de inicio:299
Página de fin:318
DOI: http://dx.doi.org/10.1023/A:1005283923956
Título revista:Solar Physics
Título revista abreviado:Sol. Phys.
ISSN:00380938
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00380938_v195_n2_p299_Gomez

Referencias:

  • Biskamp, D., (1993) Nonlinear Magnetohydrodynamics, , Cambridge University Press, Cambridge
  • Biskamp, D., Welter, H., (1989) Phys. Fluids, B1, p. 1964
  • Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A., (1988) Spectral Methods in Fluid Dynamics, , Springer-Verlag, New York
  • Chae, J., Schuhle, U., Lemaire, P., (1998) Astrophys. J., 505, p. 957
  • Cheng, C., Doschek, G., Feldman, U., (1979) Astrophys. J., 227, p. 1037
  • Crosby, N.B., Aschwanden, M.J., Dennis, B.R., (1993) Solar Phys., 143, p. 275
  • Dmitruk, P., Gómez, D.O., (1997) Astrophys. J., 484, pp. L83
  • Dmitruk, P., Gómez, D.O., (1999) Astrophys. J., 527, pp. L63
  • Dmitruk, P., Gómez, D.O., DeLuca, E.E., (1998) Astrophys. J., 505, p. 974
  • Einaudi, G., Velli, M., Politano, H., Pouquet, A., (1996) Astrophys. J., 457, pp. L113
  • Frisch, U., (1996) Turbulence, , Cambridge University Press, Cambridge
  • Fyfe, D., Montgomery, D., Joyce, G., (1977) J. Plasma Phys., 17, p. 369
  • Galsgaard, K., Nordlund, A., (1996) J. Geophys. Res., 101, p. 13445
  • Georgoulis, M., Velli, M., Einaudi, G., (1998) Astrophys. J., 497, p. 957
  • Golub, L., Pasachoff, J., (1997) The Solar Corona, , Cambridge University Press, Cambridge
  • Golub, L., Herant, M., Kalata, K., Louvas, I., Nystrom, G., Pardo, F., Spiller, E., Wilczynski, J.S., (1990) Nature, 344, p. 842
  • Gómez, D.O., (1990) Fund. Cosmic Phys., 14, p. 361
  • Gómez, D.O., Ferro Fontan, C., (1988) Solar Phys., 116, p. 33
  • Gómez, D.O., Ferro Fontán, C., (1992) Astrophys. J., 394, p. 662
  • Gómez, D.O., De Luca, E.E., Mc Clymont, A.N., (1995) Astrophys. J., 448, p. 954
  • Grant, H.L., Stewart, R.W., Molliet, A., (1962) J. Fluid Mech., 12, p. 241
  • Harra-Murnion, L.K., Matthews, S.A., Hara, H., Ichimoto, K., (1999) Astron. Astrophys., 345, p. 1011
  • Hendrix, D.L., Van Hoven, G., (1996) Astrophys. J., 467, p. 887
  • Hendrix, D.L., Van Hoven, G., Mikic, Z., Schnack, D.D., (1996) Astrophys. J., 470, p. 1192
  • Herring, J., Kraichnan, R.H., (1972) Statistical Models and Turbulence, , M. Rosenblatt and C. van Atta (eds.), Springer-Verlag, Berlin
  • Heyvaerts, J., Priest, E.R., (1983) Astron. Astrophys., 117, p. 220
  • Heyvaerts, J., Priest, E.R., (1992) Astrophys. J., 390, p. 297
  • Hollweg, J.V., (1985) Advance Space Plasma Physics, p. 77. , B. Buti (ed.), World Science Publ. Co., Singapore
  • Hudson, H.S., (1991) Solar Phys., 133, p. 357
  • Ionson, J.A., (1982) Astrophys. J., 254, p. 318
  • Kolmogorov, A.N., (1941) Dokl. Acad. Sci. URSS, 30, p. 301
  • Kraichnan, R.H., (1965) Phys. Fluids, 8, p. 138
  • Lee, T.T., Petrosian, V., McTiernan, J.M., (1993) Astrophys. J., 412, p. 401
  • Lilly, D.K., (1969) Phys. Fluids, 12, p. 240
  • Longcope, D.W., Strauss, H.R., (1994) Astrophys. J., 426, p. 742
  • Longcope, D.W., Sudan, R.N., (1994) Astrophys. J., 437, p. 491
  • Lu, E.T., Hamilton, R.J., (1991) Astrophys. J., 380, pp. L89
  • Lu, E., Hamilton, R., McTiernan, J., Bromund, K., (1993) Astrophys. J., 412, p. 841
  • Mandrini, C.H., Démoulin, P., Klimchuk, J.A., (2000) Astrophys. J., 530. , in press
  • Matthaeus, W.H., Goldstein, G.L., (1982) J. Geophys. Res., 87, p. 6011
  • Matthaeus, W.H., Lamkin, S.L., (1986) Phys. Fluids, 29, p. 2513
  • Matthaeus, W.H., Oughton, S., Ghosh, S., Hossain, M., (1998) Phys. Rev. Letters, 81, p. 2056
  • Meneguzzi, M., Frisch, U., Pouquet, A., (1981) Phys. Rev. Letters, 47, p. 1060
  • Mikic, Z., Schnack, D.D., Van Hoven, G., (1989) Astrophys. J., 338, p. 1148
  • Milano, L.J., Gómez, D.O., Martens, P.C.H., (1997) Astrophys. J., 490, p. 442
  • Milano, L.J., Dmitruk, P., Mandrini, C.H., Gómez, D.O., Démoulin, P., (1999) Astrophys. J., 521, p. 889
  • Montgomery, D., (1983) Solar Wind V, p. 107. , M. Neugebauer (ed.), NASA Conf. Publ. 2280
  • Nakariakov, V.M., Ofman, L., DeLuca, E.E., Roberts, B., Davila, J.M., (1999) Nature, 285, p. 862
  • Narain, U., Ulmschneider, P., (1990) Space Sci. Rev., 54, p. 377
  • Narain, U., Ulmschneider, P., (1996) Space Sci. Rev., 75, p. 453
  • Nesis, A., Hammer, R., Kiefer, M., Schleicher, H., Sigwarth, M., Staiger, J., (1999) Astron. Astrophys., 345, p. 265
  • Ofman, L., Davila, J.M., Steinolfson, R.S., (1995) Astrophys. J., 444, p. 471
  • Oughton, S., Ghosh, S., Matthaeus, W.H., (1998) Phys. Plasmas, 5, p. 4235
  • Parker, E.N., (1972) Astrophys. J., 174, p. 499
  • Parker, E.N., (1983) Astrophys. J., 264, p. 642
  • Parker, E.N., (1988) Astrophys. J., 330, p. 474
  • Politano, H., Pouquet, A., Sulem, P.L., (1989) Phys. Fluids, B1, p. 2330
  • Porter, L.J., Klimchuk, J.A., (1995) Astrophys. J., 454, p. 499
  • Saba, J., Strong, K., (1991) Astrophys. J., 375, p. 789
  • Schrijver, C.J., (1999) Solar Phys., 187, p. 261
  • Seely, N., (1997) Astrophys. J., 484, pp. L87
  • Shimizu, T., (1995) Publ. Astr. Soc. Japan, 47, p. 251
  • Sommeria, J., (1986) J. Fluid Mech., 170, p. 139
  • Strauss, H., (1976) Phys. Fluids, 19, p. 134
  • Van Ballegooijen, A.A., (1986) Astrophys. J., 311, p. 1001
  • Vlahos, H., Georgoulis, M., Kluiving, R., Paschos, P., (1995) Astron. Astrophys., 299, p. 897
  • Withbroe, G.L., Noyes, R.W., (1977) Ann. Rev. Astron. Astrophys., 15, p. 363
  • Zirker, J.B., (1993) Solar Phys., 148, p. 43

Citas:

---------- APA ----------
Gomez, D.O., Dmitruk, P.A. & Milano, L.J. (2000) . Recent theoretical results on coronal heating. Solar Physics, 195(2), 299-318.
http://dx.doi.org/10.1023/A:1005283923956
---------- CHICAGO ----------
Gomez, D.O., Dmitruk, P.A., Milano, L.J. "Recent theoretical results on coronal heating" . Solar Physics 195, no. 2 (2000) : 299-318.
http://dx.doi.org/10.1023/A:1005283923956
---------- MLA ----------
Gomez, D.O., Dmitruk, P.A., Milano, L.J. "Recent theoretical results on coronal heating" . Solar Physics, vol. 195, no. 2, 2000, pp. 299-318.
http://dx.doi.org/10.1023/A:1005283923956
---------- VANCOUVER ----------
Gomez, D.O., Dmitruk, P.A., Milano, L.J. Recent theoretical results on coronal heating. Sol. Phys. 2000;195(2):299-318.
http://dx.doi.org/10.1023/A:1005283923956