Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In this work we generalize the concept of activity of continuous time signals. We define the activity of order n of a signal and show that it allows us to estimate the number of sections of polynomials up to order n which are needed to represent that signal with a certain accuracy. Then we apply this concept to obtain a lower bound for the number of steps performed by quantization-based integration algorithms in the simulation of ordinary differential equations. We perform an exhaustive analysis over two examples, computing the activity of order n and comparing it with the number of steps performed by different integration methods. This analysis corroborates the theoretical predictions and also allows us to measure the suitability of the different algorithms depending on how close to the theoretical lower bound they perform. © 2015, The Author(s). All rights reserved.

Registro:

Documento: Artículo
Título:Activity of order n in continuous systems
Autor:Castro, R.; Kofman, E.
Filiación:Computer Science Department, FCEyN, National Scientific and Technical Research Council (CONICET), University of Buenos Aires, Buenos Aires, Argentina
French-Argentine International Center for Information and Systems Sciences (CIFASIS), Control Department, FCEIA, National University of Rosario, Rosario, Argentina
Palabras clave:Activity tracking; continuous systems; discrete event simulation; numerical solvers; quantized state systems; Discrete event simulation; Activity tracking; Continuous system; Continuous-time signal; Integration algorithm; Integration method; Lower bounds; Numerical solvers; Quantized state systems; Continuous time systems
Año:2015
Volumen:91
Número:4
Página de inicio:337
Página de fin:348
DOI: http://dx.doi.org/10.1177/0037549715577124
Título revista:SIMULATION
Título revista abreviado:Simulation
ISSN:00375497
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00375497_v91_n4_p337_Castro

Referencias:

  • Jammalamadaka, R., (2003) Activity characterization of spatial models: Application to discrete event solution of partial differential equations, , Master’s Thesis, The University of Arizona, AZ
  • Kofman, E., Junco, S., Quantized state systems: A DEVS approach for continuous system simulation (2001) Sim: Trans Soc Model Sim Int, 18 (3), pp. 123-132
  • Migoni, G., Kofman, E., Cellier, F., Quantization-based new integration methods for stiff ODEs (2012) Sim: Trans Soc Model Sim Int, 88 (4), pp. 387-407
  • Migoni, G., Bortolotto, M., Kofman, E., Linearly implicit quantization-based integration methods for stiff ordinary differential equations (2013) Sim Modell Prac Theor, 35, pp. 118-136
  • Kofman, E., A second order approximation for DEVS simulation of continuous systems (2002) Sim: Trans Soc Model Sim Int, 78 (2), pp. 76-89
  • Lackner, M.R., Toward a general simulation capability (1962), pp. 1-14. , Proceedings of the spring joint computer conference, San Francisco, CA; Lackner, M.R., (1964) Digital simulation and system theory, , Santa Monica, CA: System Development Corp
  • Kiviat, P.J., (1967) Digital computer simulation: Modeling concepts, , Santa Monica, CA: RAND Corporation
  • Kiviat, P.J., (1969) Digital computer simulation: Computer programming languages, , Santa Monica, CA: RAND Corporation
  • Fishman, G.S., (1973) Concepts and methods in discrete event digital simulation, , New York, NY: John Wiley and Sons
  • Balci, O., The implementation of four conceptual frameworks for simulation modeling in high-level languages (1988) Proceedings of the 20th conference on winter simulation, pp. 287-295
  • Banks, J., Carson, J.S., Nelson, B.L., (2009) Discrete-event system simulation, , 5th edn. Englewood Cliffs, NJ: Prentice Hall
  • Muzy, A., Zeigler, B.P., Introduction to the activity tracking paradigm in component-based simulation (2008) Open Cyber System J, 2, pp. 30-38
  • Zeigler, B.P., Kim, T.G., Praehofer, H., (2000) Theory of modeling and simulation, , 2nd edn. New York, NY: Academic Press
  • Zeigler, B.P., Jammalamadaka, R., Akerkar, S.R., Continuity and change (activity) are fundamentally related in DEVS simulation of continuous systems (2005) Artificial intelligence and simulation, 3397, pp. 1-13. , In: Kim T (ed.) (Lecture Notes in Computer Science Berlin/Heidelberg: Springer
  • Jain, S., Creasey, R.R., Himmelspach, J., What is new with the activity world view in modeling and simulation? Using activity as a unifying guide for modeling and simulation (2011) Proceedings of the 2011 winter simulation conference (WSC), pp. 2882-2894
  • Muzy, A., Jammalamadaka, R., Zeigler, B.P., The Activity tracking paradigm in discrete-event modeling and simulation: The case of spatially continuous distributed systems (2011) Sim: Trans Soc Model Sim Int, 87 (5), pp. 449-464
  • Hu, X., Zeigler, B.P., Linking information and energy – activity-based energy-aware information processing (2013) Sim: Trans Soc Model Sim Int, 89 (4), pp. 435-450
  • Santucci, J.F., Capocchi, L., Implementation and analysis of DEVS activity-tracking with DEVSimPy (2013) ITM web of conferences
  • Muzy, A., Varenne, F., Zeigler, B.P., Refounding of the activity concept? Towards a federative paradigm for modeling and simulation (2013) Sim, 89 (2), pp. 156-177
  • Cellier, F.E., Kofman, E., (2006) Continuous system simulation, , New York, NY: Springer
  • Kofman, E., A third order discrete event simulation method for continuous system simulation (2006) Lat Am Appl Res, 36 (2), pp. 101-108
  • Zeigler, B., Lee, J.S., Theory of quantized systems: Formal basis for DEVS/HLA distributed simulation environment (1998) SPIE proceedings, pp. 49-58

Citas:

---------- APA ----------
Castro, R. & Kofman, E. (2015) . Activity of order n in continuous systems. SIMULATION, 91(4), 337-348.
http://dx.doi.org/10.1177/0037549715577124
---------- CHICAGO ----------
Castro, R., Kofman, E. "Activity of order n in continuous systems" . SIMULATION 91, no. 4 (2015) : 337-348.
http://dx.doi.org/10.1177/0037549715577124
---------- MLA ----------
Castro, R., Kofman, E. "Activity of order n in continuous systems" . SIMULATION, vol. 91, no. 4, 2015, pp. 337-348.
http://dx.doi.org/10.1177/0037549715577124
---------- VANCOUVER ----------
Castro, R., Kofman, E. Activity of order n in continuous systems. Simulation. 2015;91(4):337-348.
http://dx.doi.org/10.1177/0037549715577124