Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

This paper deals with the integral version of the Dirichlet homogeneous fractional Laplace equation. For this problem weighted and fractional Sobolev a priori estimates are provided in terms of the Holder regularity of the data. By relying on these results, optimal order of convergence for the standard linear finite element method is proved for quasi-uniform as well as graded meshes. Some numerical examples are given showing results in agreement with the theoretical predictions. © by SIAM 2017.

Registro:

Documento: Artículo
Título:A fractional Laplace equation: Regularity of solutions and finite element approximations
Autor:Acosta, G.; Borthagaray, J.P.
Filiación:IMAS - CONICET, Departamento de Matematica, Universidad de Buenos Aires, Buenos Aires, 1428, Argentina
Palabras clave:Finite elements; Fractional Laplacian; Graded meshes; Weighted fractional norms; Integrodifferential equations; Laplace equation; Laplace transforms; Nonlinear equations; Poisson equation; A-priori estimates; Finite element approximations; Fractional Laplacian; Graded meshes; Linear finite elements; Optimal order of convergence; Regularity of solutions; Weighted fractional norms; Finite element method
Año:2017
Volumen:55
Número:2
Página de inicio:472
Página de fin:495
DOI: http://dx.doi.org/10.1137/15M1033952
Título revista:SIAM Journal on Numerical Analysis
Título revista abreviado:SIAM J Numer Anal
ISSN:00361429
CODEN:SJNAA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00361429_v55_n2_p472_Acosta

Referencias:

  • Acosta, G., Bersetche, F., Borthagaray, J.P., (2016) A Short FEM Implementation for A 2D Homogeneous Dirichlet Problem of A Fractional Laplacian, , preprint, arXiv:1610.05558v1
  • Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M., Application of a fractional advection-dispersion equation (2000) Water Resources Res., 36, pp. 1403-1412
  • Bertoin, J., (1996) Levy Processes, Cambridge Tracts in Math., , Cambridge University Press, Cambridge, UK
  • Bogdan, K., Burdzy, K., Chen, Z.-Q., Censored stable processes (2003) Probab. Theory Related Fields, 127, pp. 89-152
  • Borthagaray, J.P., Del Pezzo, L.M., Martínez, S., (2016) Finite Element Approximation for the Fractional Eigenvalue Problem, , preprint, arXiv:1603.00317
  • Bourgain, J., Brezis, H., Mironescu, P., Another look at Sobolev spaces (2001) Optimal Control and Partial Differential Equations, pp. 439-455. , IOS Press, Amsterdam
  • Brenner, S.C., Scott, L.R., The Mathematical Theory of Finite Element Methods (1994) Texts in Appl. Math., 15. , Springer-Verlag, New York
  • Buades, A., Coll, B., Morel, J.M., Image denoising methods: A new nonlocal principle (2010) SIAM Rev., 52, pp. 113-147
  • Caffarelli, L., Silvestre, L., An extension problem related to the fractional Laplacian (2007) Comm. Partial Differential Equations, 32, pp. 1245-1260
  • Carbery, A., Maz'Ya, V., Mitrea, M., Rule, D., The integrability of negative powers of the solution of the Saint Venant problem (2014) Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 13, pp. 465-531
  • Carr, P., Geman, H., The fine structure of asset returns: An empirical investigation (2002) J. Business, 75, pp. 305-332. , https://EconPapers.repec.org/RePEc:ucp:jnlbus:v:75:y:2002:i:2:p:305-332
  • Ciarlet, P., Analysis of the Scott-Zhang interpolation in the fractional order Sobolev spaces (2013) J. Numer. Math., 21, pp. 173-180
  • Cont, R., Tankov, P., Financial Modelling with Jump Processes (2004) Chapman & Hall/CRC Financ. Math. Ser., , CRC Press, Boca Raton, FL
  • Cushman, J.H., Ginn, T.R., Nonlocal dispersion in media with continuously evolving scales of heterogeneity (1993) Transport Porous Media, 13, pp. 123-138
  • D'Elia, M., Gunzburger, M., The fractional laplacian operator on bounded domains as a special case of the nonlocal diffusion operator (2013) Comput. Math. Appl., 66, pp. 1245-1260
  • Di Nezza, E., Palatucci, G., Valdinoci, E., Hitchhiker's guide to the fractional Sobolev spaces (2012) Bull. Sci. Math., 136, pp. 521-573
  • Du, Q., Gunzburger, M., Lehoucq, R.B., Zhou, K., A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws (2013) Math. Models Methods Appl. Sci., 23, pp. 493-540
  • Dyda, B., A fractional order Hardy inequality (2004) Illinois J. Math., 48, pp. 575-588. , http://projecteuclid.org/euclid.ijm/1258138400
  • Ervin, V.J., Roop, J.P., Variational formulation for the stationary fractional advection dispersion equation (2006) Numer. Methods Partial Differential Equations, 22, pp. 558-576
  • Faermann, B., Localization of the Aronszajn-Slobodeckij norm and application to adaptive boundary element methods. I. the two-dimensional case (2000) IMA J. Numer. Anal., 20, pp. 203-234
  • Faermann, B., Localization of the Aronszajn-Slobodeckij norm and application to adaptive boundary element methods. II. the three-dimensional case (2002) Numer. Math., 92, pp. 467-499
  • Fiscella, A., Servadei, R., Valdinoci, E., Density properties for fractional Sobolev spaces (2015) Ann. Acad. Sci. Fenn. Math., 40, pp. 235-253
  • Gatto, P., Hesthaven, J.S., Numerical approximation of the fractional Laplacian via hp-finite elements, with an application to image denoising (2014) J. Sci. Comput., 65
  • Getoor, R.K., First passage times for symmetric stable processes in space (1961) Trans. Amer. Math. Soc., 101, pp. 75-90
  • Gilboa, G., Osher, S., Nonlocal operators with applications to image processing (2008) Multiscale Model. Simul., 7, pp. 1005-1028
  • Grisvard, P., Elliptic problems in nonsmooth domains (1985) Monogr. Stud. Math., 24. , Pitman, Boston, MA
  • Grubb, G., Fractional laplacians on domains, a development of Hörmander's theory of μ-transmission pseudoDifferential operators (2015) Adv. Math., 268, pp. 478-528
  • Huang, Y., Oberman, A.M., Numerical methods for the fractional laplacian: A finite difference-quadrature approach (2014) SIAM J. Numer. Anal., 52, pp. 3056-3084
  • Hurri-Syrjänen, R., Vähäkangas, A.V., On fractional Poincare inequalities (2013) J. Anal. Math., 120, pp. 85-104
  • Klafter, J., Sokolov, I.M., Anomalous diffusion spreads its wings (2005) Physics World, 18, p. 29
  • Kufner, A., (1985) Weighted Sobolev Spaces, , Wiley-Interscience, New York
  • Lions, J.L., Magenes, E., (2012) Non-Homogeneous Boundary Value Problems and Applications, 1. , Springer, New York
  • Lou, Y., Zhang, X., Osher, S., Bertozzi, A., Image recovery via nonlocal operators (2010) J. Sci. Comput., 42, pp. 185-197
  • Martio, O., Definitions for uniform domains (1980) Ann. Acad. Sci. Fenn. Ser. A i Math., 5, pp. 197-205
  • McCay, B.M., Narasimhan, M.N.L., Theory of nonlocal electromagnetic uids (1981) Arch. Mech. (Arch. Mech. Stos.), 33, pp. 365-384
  • Metzler, R., Klafter, J., The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics (2004) J. Phys. A, 37, pp. R161-R208
  • Musina, R., Nazarov, A.I., On fractional Laplacians (2014) Comm. Partial Differential Equations, 39, pp. 1780-1790
  • Nochetto, R.H., Otárola, E., Salgado, A.J., A PDE approach to fractional diffusion in general domains: A priori error analysis (2014) Found. Comput. Math., 15, pp. 733-791
  • Ros-Oton, X., Serra, J., The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary (2014) J. Math. Pures Appl., 101, pp. 275-302
  • Sauter, S.A., Schwab, C., Boundary Element Methods (2011) Springer Ser. Comput. Math., 39. , Springer-Verlag, Berlin
  • Scott, L.R., Zhang, S., Finite element interpolation of nonsmooth functions satisfying boundary conditions (1990) Math. Comp., 54, pp. 483-493
  • Servadei, R., Valdinoci, E., On the spectrum of two different fractional operators (2014) Proc. Roy. Soc. Edinburgh Sect. A, 144, pp. 831-855
  • Silling, S.A., Reformulation of elasticity theory for discontinuities and long-range forces (2000) J. Mech. Phys. Solids, 48, pp. 175-209
  • Stein, E.M., Singular integrals and differentiability properties of functions (1970) Princeton Math. Ser., 30. , Princeton University Press, Princeton, NJ
  • Stinga, P.R., Torrea, J.L., Extension problem and Harnack's inequality for some fractional operators (2010) Comm. Partial Differential Equations, 35, pp. 2092-2122
  • Valdinoci, E., From the long jump random walk to the fractional Laplacian (2009) Bol. Soc. Esp. Mat. Apl. SeMA, 49, pp. 33-44

Citas:

---------- APA ----------
Acosta, G. & Borthagaray, J.P. (2017) . A fractional Laplace equation: Regularity of solutions and finite element approximations. SIAM Journal on Numerical Analysis, 55(2), 472-495.
http://dx.doi.org/10.1137/15M1033952
---------- CHICAGO ----------
Acosta, G., Borthagaray, J.P. "A fractional Laplace equation: Regularity of solutions and finite element approximations" . SIAM Journal on Numerical Analysis 55, no. 2 (2017) : 472-495.
http://dx.doi.org/10.1137/15M1033952
---------- MLA ----------
Acosta, G., Borthagaray, J.P. "A fractional Laplace equation: Regularity of solutions and finite element approximations" . SIAM Journal on Numerical Analysis, vol. 55, no. 2, 2017, pp. 472-495.
http://dx.doi.org/10.1137/15M1033952
---------- VANCOUVER ----------
Acosta, G., Borthagaray, J.P. A fractional Laplace equation: Regularity of solutions and finite element approximations. SIAM J Numer Anal. 2017;55(2):472-495.
http://dx.doi.org/10.1137/15M1033952