Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We characterize solutions to the homogeneous parabolic p-Laplace equation ut = |∇u|2-pΔpu = (p - 2)Δ∞u + Δu in terms of an asymptotic mean value property. The results are connected with the analysis of tug-of-war games with noise in which the number of rounds is bounded. The value functions for these games approximate a solution to the PDE above when the parameter that controls the size of the possible steps goes to zero. Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Registro:

Documento: Artículo
Título:An asymptotic mean value chara cterization for a class of nonlinear parabolic equations related to tug-of-war games
Autor:Manfredi, J.J.; Parviainenf, M.; Rossi, J.D.
Filiación:Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, United States
Aalto University, School of Science and Technology, P.O. Box 11000, FI-00076 Aalto, Helsinki, Finland
Departamento de Análisis Matemático, Universidad de Alicante, Ap. correos 99, 03080 Alicante, Spain
Departamento de Matemática, FCEyN UBA (1428), Buenos Aires, Argentina
Palabras clave:Dirichlet boundary conditions; Dynamic programming principle; Parabolic mean value property; Parabolic p-laplacian; Stochastic games; Tug-of-war games with limited number of rounds; Viscosity solutions; Dirichlet boundary condition; Dynamic programming principle; Mean values; P-Laplacian; Stochastic game; Tug-of-war games with limited number of rounds; Viscosity solutions; Asymptotic analysis; Boundary conditions; Laplace equation; Laplace transforms; Nonlinear equations; Stochastic systems; Viscosity; Dynamic programming
Año:2010
Volumen:42
Número:5
Página de inicio:2058
Página de fin:2081
DOI: http://dx.doi.org/10.1137/100782073
Título revista:SIAM Journal on Mathematical Analysis
Título revista abreviado:SIAM J. Math. Anal.
ISSN:00361410
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00361410_v42_n5_p2058_Manfredi

Referencias:

  • Barron, E., Evans, L., Jensen, R., The infinity Laplacian, Aronsson's equation and their generalizations (2008) Trans. Amer. Math. Soc., 360, pp. 77-101
  • Chen, Y., Giga, Y., Goto, S., Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations (1991) J. Differential Geom., 33, pp. 749-786
  • Crandall, M.G., Ishii, H., Lions, P.L., User's guide to viscosity solutions of second order partial differential equations (1992) Bull. Amer. Math. Soc. (N. S.), 27, pp. 1-67
  • Does, K., (2009) An Evolution Equation Involving the Normalized p-Laplacian, , Ph. D. thesis, University of Cologne, Cologne, Germany
  • Evans, L.C., Spruck, J., Motion of level sets by mean curvature I (1991) J. Differential Geom., 33, pp. 635-681
  • Giga, Y., (2006) Surface Evolution Equations-a Level Set Approach, , Birkhäuser, Basel, Switzerland
  • Giga, Y., Goto, S., Ishii, H., Sato, M.-H., Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains (1991) Indiana Univ. Math. J., 40, pp. 443-470
  • Juutinen, P., Principal eigenvalue of a very badly degenerate operator and applications (2007) J. Differential Equations, 236, pp. 532-550
  • Juutinen, P., Kawohl, B., On the evolution governed by the infinity Laplacian (2006) Math. Ann., 335, pp. 819-851
  • Juutinen, P., Lindqvist, P., Manfredi, J.J., On the equivalence of viscosity solutions and weak solutions for a quasi-linear equation (2001) SIAM J. Math. Anal., 33, pp. 699-717
  • Kohn, R.V., Serfaty, S., A deterministic-control-based approach to fully nonlinear parabolic and elliptic equations (2010) Comm. Pure Appl. Math., 63, pp. 1298-1350
  • Gruyer, E.L.E., On absolutely minimizing Lipschitz extensions and PDE Δ∞ (u) = 0 (2007) NoDEA Nonlinear Differential Equations Appl., 14, pp. 29-55
  • Gruyer, E.L.E., Archer, J.C., Harmonious extensions (1998) SIAM J. Math. Anal., 29, pp. 279-292
  • Maitra, A.P., Sudderth, W.D., Borel stochastic games with limsup payoff (1996) Ann. Probab., 21, pp. 861-885
  • Maitra, A.P., Sudderth, W.D., Discrete gambling and stochastic games (1996) Stoch. Model. Appl. Probab., Appl. Math., 32. , Springer, New York
  • Manfredi, J.J., Parviainen, M., Rossi, J.D., An asymptotic mean value characterization of p-harmonic functions (2010) Proc. Amer. Math. Soc., 138, pp. 881-889
  • Manfredi, J.J., Parviainen, M., Rossi, J.D., On the Definition and Properties of P-harmonious Functions, , preprint
  • Manfredi, J.J., Parviainen, M., Rossi, J.D., Dynamic programming principle for tug-of-war games with noise ESAIM Control Optim. Calc. Var., , to appear
  • Oberman, A.M., A convergent difference scheme for the infinity Laplacian: Construction of absolutely minimizing Lipschitz extensions (2005) Math. Comp., 74, pp. 1217-1230
  • Ohnuma, S., Sato, K., Singular degenerate parabolic equations with applications to the p-Laplace diffusion equation (1997) Comm. Partial Differential Equations, 22, pp. 381-411
  • Peres, Y., Schramm, O., Sheffield, S., Wilson, D.B., Tug-of-war and the infinity Laplacian (2009) J. Amer. Math. Soc., 22, pp. 167-210
  • Peres, Y., Sheffield, S., Tug-of-war with noise: A game theoretic view of the p-Laplacian (2008) Duke Math. J., 145, pp. 91-120

Citas:

---------- APA ----------
Manfredi, J.J., Parviainenf, M. & Rossi, J.D. (2010) . An asymptotic mean value chara cterization for a class of nonlinear parabolic equations related to tug-of-war games. SIAM Journal on Mathematical Analysis, 42(5), 2058-2081.
http://dx.doi.org/10.1137/100782073
---------- CHICAGO ----------
Manfredi, J.J., Parviainenf, M., Rossi, J.D. "An asymptotic mean value chara cterization for a class of nonlinear parabolic equations related to tug-of-war games" . SIAM Journal on Mathematical Analysis 42, no. 5 (2010) : 2058-2081.
http://dx.doi.org/10.1137/100782073
---------- MLA ----------
Manfredi, J.J., Parviainenf, M., Rossi, J.D. "An asymptotic mean value chara cterization for a class of nonlinear parabolic equations related to tug-of-war games" . SIAM Journal on Mathematical Analysis, vol. 42, no. 5, 2010, pp. 2058-2081.
http://dx.doi.org/10.1137/100782073
---------- VANCOUVER ----------
Manfredi, J.J., Parviainenf, M., Rossi, J.D. An asymptotic mean value chara cterization for a class of nonlinear parabolic equations related to tug-of-war games. SIAM J. Math. Anal. 2010;42(5):2058-2081.
http://dx.doi.org/10.1137/100782073