Abstract:
We characterize solutions to the homogeneous parabolic p-Laplace equation ut = |∇u|2-pΔpu = (p - 2)Δ∞u + Δu in terms of an asymptotic mean value property. The results are connected with the analysis of tug-of-war games with noise in which the number of rounds is bounded. The value functions for these games approximate a solution to the PDE above when the parameter that controls the size of the possible steps goes to zero. Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
Registro:
Documento: |
Artículo
|
Título: | An asymptotic mean value chara cterization for a class of nonlinear parabolic equations related to tug-of-war games |
Autor: | Manfredi, J.J.; Parviainenf, M.; Rossi, J.D. |
Filiación: | Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, United States Aalto University, School of Science and Technology, P.O. Box 11000, FI-00076 Aalto, Helsinki, Finland Departamento de Análisis Matemático, Universidad de Alicante, Ap. correos 99, 03080 Alicante, Spain Departamento de Matemática, FCEyN UBA (1428), Buenos Aires, Argentina
|
Palabras clave: | Dirichlet boundary conditions; Dynamic programming principle; Parabolic mean value property; Parabolic p-laplacian; Stochastic games; Tug-of-war games with limited number of rounds; Viscosity solutions; Dirichlet boundary condition; Dynamic programming principle; Mean values; P-Laplacian; Stochastic game; Tug-of-war games with limited number of rounds; Viscosity solutions; Asymptotic analysis; Boundary conditions; Laplace equation; Laplace transforms; Nonlinear equations; Stochastic systems; Viscosity; Dynamic programming |
Año: | 2010
|
Volumen: | 42
|
Número: | 5
|
Página de inicio: | 2058
|
Página de fin: | 2081
|
DOI: |
http://dx.doi.org/10.1137/100782073 |
Título revista: | SIAM Journal on Mathematical Analysis
|
Título revista abreviado: | SIAM J. Math. Anal.
|
ISSN: | 00361410
|
Registro: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00361410_v42_n5_p2058_Manfredi |
Referencias:
- Barron, E., Evans, L., Jensen, R., The infinity Laplacian, Aronsson's equation and their generalizations (2008) Trans. Amer. Math. Soc., 360, pp. 77-101
- Chen, Y., Giga, Y., Goto, S., Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations (1991) J. Differential Geom., 33, pp. 749-786
- Crandall, M.G., Ishii, H., Lions, P.L., User's guide to viscosity solutions of second order partial differential equations (1992) Bull. Amer. Math. Soc. (N. S.), 27, pp. 1-67
- Does, K., (2009) An Evolution Equation Involving the Normalized p-Laplacian, , Ph. D. thesis, University of Cologne, Cologne, Germany
- Evans, L.C., Spruck, J., Motion of level sets by mean curvature I (1991) J. Differential Geom., 33, pp. 635-681
- Giga, Y., (2006) Surface Evolution Equations-a Level Set Approach, , Birkhäuser, Basel, Switzerland
- Giga, Y., Goto, S., Ishii, H., Sato, M.-H., Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains (1991) Indiana Univ. Math. J., 40, pp. 443-470
- Juutinen, P., Principal eigenvalue of a very badly degenerate operator and applications (2007) J. Differential Equations, 236, pp. 532-550
- Juutinen, P., Kawohl, B., On the evolution governed by the infinity Laplacian (2006) Math. Ann., 335, pp. 819-851
- Juutinen, P., Lindqvist, P., Manfredi, J.J., On the equivalence of viscosity solutions and weak solutions for a quasi-linear equation (2001) SIAM J. Math. Anal., 33, pp. 699-717
- Kohn, R.V., Serfaty, S., A deterministic-control-based approach to fully nonlinear parabolic and elliptic equations (2010) Comm. Pure Appl. Math., 63, pp. 1298-1350
- Gruyer, E.L.E., On absolutely minimizing Lipschitz extensions and PDE Δ∞ (u) = 0 (2007) NoDEA Nonlinear Differential Equations Appl., 14, pp. 29-55
- Gruyer, E.L.E., Archer, J.C., Harmonious extensions (1998) SIAM J. Math. Anal., 29, pp. 279-292
- Maitra, A.P., Sudderth, W.D., Borel stochastic games with limsup payoff (1996) Ann. Probab., 21, pp. 861-885
- Maitra, A.P., Sudderth, W.D., Discrete gambling and stochastic games (1996) Stoch. Model. Appl. Probab., Appl. Math., 32. , Springer, New York
- Manfredi, J.J., Parviainen, M., Rossi, J.D., An asymptotic mean value characterization of p-harmonic functions (2010) Proc. Amer. Math. Soc., 138, pp. 881-889
- Manfredi, J.J., Parviainen, M., Rossi, J.D., On the Definition and Properties of P-harmonious Functions, , preprint
- Manfredi, J.J., Parviainen, M., Rossi, J.D., Dynamic programming principle for tug-of-war games with noise ESAIM Control Optim. Calc. Var., , to appear
- Oberman, A.M., A convergent difference scheme for the infinity Laplacian: Construction of absolutely minimizing Lipschitz extensions (2005) Math. Comp., 74, pp. 1217-1230
- Ohnuma, S., Sato, K., Singular degenerate parabolic equations with applications to the p-Laplace diffusion equation (1997) Comm. Partial Differential Equations, 22, pp. 381-411
- Peres, Y., Schramm, O., Sheffield, S., Wilson, D.B., Tug-of-war and the infinity Laplacian (2009) J. Amer. Math. Soc., 22, pp. 167-210
- Peres, Y., Sheffield, S., Tug-of-war with noise: A game theoretic view of the p-Laplacian (2008) Duke Math. J., 145, pp. 91-120
Citas:
---------- APA ----------
Manfredi, J.J., Parviainenf, M. & Rossi, J.D.
(2010)
. An asymptotic mean value chara cterization for a class of nonlinear parabolic equations related to tug-of-war games. SIAM Journal on Mathematical Analysis, 42(5), 2058-2081.
http://dx.doi.org/10.1137/100782073---------- CHICAGO ----------
Manfredi, J.J., Parviainenf, M., Rossi, J.D.
"An asymptotic mean value chara cterization for a class of nonlinear parabolic equations related to tug-of-war games"
. SIAM Journal on Mathematical Analysis 42, no. 5
(2010) : 2058-2081.
http://dx.doi.org/10.1137/100782073---------- MLA ----------
Manfredi, J.J., Parviainenf, M., Rossi, J.D.
"An asymptotic mean value chara cterization for a class of nonlinear parabolic equations related to tug-of-war games"
. SIAM Journal on Mathematical Analysis, vol. 42, no. 5, 2010, pp. 2058-2081.
http://dx.doi.org/10.1137/100782073---------- VANCOUVER ----------
Manfredi, J.J., Parviainenf, M., Rossi, J.D. An asymptotic mean value chara cterization for a class of nonlinear parabolic equations related to tug-of-war games. SIAM J. Math. Anal. 2010;42(5):2058-2081.
http://dx.doi.org/10.1137/100782073