Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Mediterranean cyclones with tropical-like characteristics such as spiral cloud coverage and a central cloud-free “eye” are referred to as medicanes. These systems have been analyzed due to their relation with high-impact weather. In previous studies, the identification of medicanes has been typically performed subjectively, using satellite pictures, but also objectively through three-dimensional diagnosis of a warm core and an axisymmetric structure. Despite the presence of these characteristics, it is still unclear if medicanes show dynamical similarities with tropical cyclones. We analyse the (thermo-)dynamics of a recognized medicane that occurred in December 2005 by applying different diagnostics to a high-resolution simulation. These diagnostics are focused on the intensification, dynamical structure and water budget of this representative case, aiming to highlight extratropical and tropical cyclone characteristics. Three stages in the medicane life cycle are identified. In stage I, a potential vorticity (PV) streamer reaches the Mediterranean, triggering deep convection and deepening the medicane's central surface pressure due to diabatic heating. When the lowest central pressure is reached (stage II), the medicane presents a warm core and an axisymmetric structure. However, convection is rather weak and the PV streamer evolves into a cut-off system which contributes to the deepening of the medicane's surface pressure. Finally, stage III corresponds to the decay phase where the medicane tends to weaken and lose its axisymmetric structure. Our results highlight the detrimental role of deep convection prior to the mature stage of the medicane, as well as the possibility of positive or negative feedback of upper-tropospheric dynamics on the central surface pressure. In addition, we show that the medicane warm core might be achieved due to front seclusion, while the “eye” formation is associated with dry air intrusions. Our analysis suggests that medicanes are hybrid systems combining characteristics of both tropical and extratropical cyclones and thus they plausibly correspond to subtropical cyclones. © 2018 Royal Meteorological Society

Registro:

Documento: Artículo
Título:Medicanes as subtropical cyclones: the December 2005 case from the perspective of surface pressure tendency diagnostics and atmospheric water budget
Autor:Fita, L.; Flaounas, E.
Filiación:Laboratoire de Météorologie Dynamique, L'Institut Pierre-Simon Laplace, CNRS, and Ecole Polytechnique, Paris, France
Centro de Investigaciones del Mar y la Atmósfera (CIMA), CONICET-UBA, CNRS UMI-IFAECI, Buenos Aires, Argentina
National Observatory of Athens, Greece
Palabras clave:medicane; mediterranean sub-tropical storms; surface tendency diagnostics; water budget; Hurricanes; Hybrid systems; Natural convection; Storms; Tropics; Axisymmetric structure; Dynamical similarity; Extratropical cyclones; High resolution simulations; medicane; Subtropical cyclones; Tropical storms; Water budget; Budget control; convection; extratropical cyclone; Mediterranean environment; storm; surface pressure; tropical cyclone; troposphere; water budget
Año:2018
Volumen:144
Número:713
Página de inicio:1028
Página de fin:1044
DOI: http://dx.doi.org/10.1002/qj.3273
Título revista:Quarterly Journal of the Royal Meteorological Society
Título revista abreviado:Q. J. R. Meteorol. Soc.
ISSN:00359009
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00359009_v144_n713_p1028_Fita

Referencias:

  • Akhtar, N., Brauch, J., Dobler, A., Béranger, K., Ahrens, B., Medicanes in an ocean–atmosphere coupled regional climate model (2014) Natural Hazards and Earth System Sciences, 14, pp. 2189-2201
  • Carrió, D.S., Homar, V., Jansá, A., Romero, R., Picornell, M.A., Tropicalization process of the 7 november 2014 Mediterranean cyclone: numerical sensitivity study (2017) Atmospheric Research, 197, pp. 300-312. , https://doi.org/10.1016/j.atmosres.2017.07.018
  • Cavicchia, L., von Storch, H., Gualdi, S., A long-term climatology of medicanes (2014) Climate Dynamics, 43, pp. 1183-1195
  • Chaboureau, J.P., Pantillon, F., Lambert, D., Richard, E., Claud, C., Tropical transition of a Mediterranean storm by jet crossing (2012) Quarterly Journal of the Royal Meteorological Society, 138, pp. 596-611. , https://doi.org/10.1002/qj.960
  • Claud, C., Alhammoud, B., Funatsu, B.M., Chaboureau, J.P., Mediterranean hurricanes: Large-scale environment and convective and precipitating areas from satellite microwave observations (2010) Natural Hazards and Earth System Sciences, 10, pp. 2199-2213
  • Davis, C.A., Simulations of subtropical cyclones in a baroclinic channel model (2010) Journal of the Atmospheric Sciences, 67, pp. 2871-2892
  • Davis, C.A., Bosart, L.F., The TT problem (2004) Bulletin of the American Meteorological Society, 85, p. 1657
  • Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Vitart, F., The ERA-interim reanalysis: configuration and performance of the data assimilation system (2011) Quarterly Journal of the Royal Meteorological Society, 137, pp. 553-597. , https://doi.org/10.1002/qj.828
  • Dudhia, J., Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model (1989) Journal of the Atmospheric Sciences, 46, pp. 3077-3107. , https://doi.org/10.1175/1520-0469(1989)046<3077:nsocod>2.0.CO;2
  • Duffourg, F., Ducrocq, V., Origin of the moisture feeding the heavy precipitating systems over southeastern France (2011) Natural Hazards and Earth System Sciences, 11, pp. 1163-1178. , https://doi.org/10.5194/nhess-11-1163-2011
  • Duffourg, F., Ducrocq, V., Assessment of the water supply to Mediterranean heavy precipitation: a method based on finely designed water budgets (2013) Atmospheric Science Letters, 14, pp. 133-138. , https://doi.org/10.1002/asl2.429
  • Emanuel, K.A., An air–sea interaction theory for tropical cyclones. Part I: steady-state maintenance (1986) Journal of the Atmospheric Sciences, 43, pp. 585-604
  • Emanuel, K.A., Genesis and maintenance of “Mediterranean hurricanes” (2005) Advances in Geosciences, 2, pp. 217-220
  • Ernst, J.A., Matson, M., A Mediterranean tropical storm? (1983) Weather, 38, pp. 332-337
  • Evans, J.L., Braun, A., A climatology of subtropical cyclones in the South Atlantic (2012) Journal of Climate, 25, pp. 7328-7340. , https://doi.org/10.1175/JCLI-D-11-00212.1
  • Evans, J.L., Guishard, M.P., Atlantic subtropical storms. Part I: diagnostic criteria and composite analysis (2009) Monthly Weather Review, 137, pp. 2065-2080. , https://doi.org/10.1175/2009MWR2468.1
  • Fink, A.H., Pohle, S., Pinto, J.G., Knippertz, P., Diagnosing the influence of diabatic processes on the explosive deepening of extratropical cyclones (2012) Geophysical Research Letters, 39 (7), p. L07803. , https://doi.org/10.1029/2012GL051025
  • Fita, L., Romero, R., Luque, A., Emanuel, K., Ramis, C., Analysis of the environments of seven Mediterranean tropical-like storms using an axisymmetric, non-hydrostatic, cloud-resolving model (2007) Natural Hazards and Earth System Sciences, 7, pp. 1-16. , https://doi.org/10.5194/nhess-7-41-2007
  • Fita, L., Romero, R., Ramis, C., Intercomparison of intense cyclogenesis events over the Mediterranean basin based on baroclinic and diabatic influences (2006) Advances in Geosciences (Proccedings PLINIUS 2006), 7, pp. 333-342
  • Flaounas, E., Kotroni, V., Lagouvardos, K., Gray, L.S., Rysman, J.F., Claud, C., Heavy rainfall in Mediterranean cyclones. Part I: contribution of deep convection and warm conveyor belt (2018) Climate Dynamics, 50, pp. 2935-2949. , https://doi.org/10.1007/s00382-017-3783-x
  • Flaounas, E., Raveh-Rubin, S., Wernli, H., Drobinski, P., Bastin, S., The dynamical structure of intense Mediterranean cyclones (2015) Climate Dynamics, 44, pp. 2411-2427
  • Fritz, C., Wang, Z., Water vapor budget in a developing tropical cyclone and its implication for tropical cyclone formation (2014) Journal of the Atmospheric Sciences, 71, pp. 4321-4332. , https://doi.org/10.1175/JAS-D-13-0378.1
  • Gaertner, M.A., González-Alemán, J.J., Romera, R., Domínguez, M., Gil, V., Sánchez, E., Gallardo, C., Nikulin, G., Simulation of medicanes over the Mediterranean Sea in a regional climate model ensemble: impact of ocean–atmosphere coupling and increased resolution (2016) Climate Dynamics, 51 (3), pp. 1041-1057. , https://doi.org/10.1007/s00382-016-3456-1
  • Hart, R.E., A cyclone phase space derived from thermal wind and thermal asymmetry (2003) Monthly Weather Review, 131, pp. 585-616
  • Homar, V., Romero, R., Stensrud, D.J., Ramis, C., Alonso, S., Numerical diagnosis of a small, quasi-tropical cyclone over the western Mediterranean: dynamical versus boundary factors (2003) Quarterly Journal of the Royal Meteorological Society, 129, pp. 1469-1490
  • Hong, S.Y., Dudhia, J., Chen, S.H., A revised approach to ice-microphysical processes for the bulk parameterization of cloud and precipitation (2004) Monthly Weather Review, 132, pp. 103-120
  • Hong, S.Y., Juang, H.M.H., Zhao, Q., Implementation of prognostic cloud scheme for a regional spectral model (1998) Monthly Weather Review, 126, pp. 2621-2639
  • Hoskins, B.J., McIntyre, M.E., Robertson, A.W., On the use and significance of isentropic potential vorticity maps (1985) Quarterly Journal of the Royal Meteorological Society, 111, pp. 877-946
  • Huang, H.L., Yang, M.J., Sui, C.H., Water budget and precipitation efficiency of typhoon Morakot (2009) (2014) Journal of the Atmospheric Sciences, 71, pp. 112-129. , https://doi.org/10.1175/JAS-D-13-053.1
  • Huffman, G.J., Bolvin, D.T., Nelkin, E.J., Wolff, D.B., Adler, R.F., Gu, G., Hong, Y., Stocker, E.F., The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales (2007) Journal of Hydrometeorology, 8, pp. 38-55. , https://doi.org/10.1175/JHM560.1
  • Jiang, H., Halverson, J.B., Simpson, J., Zipser, E.J., On the differences in storm rainfall from hurricanes Isidore and Lili. Part II: water budget (2008) Weather and Forecasting, 23, pp. 44-61. , https://doi.org/doi:10.1175/2007WAF2005120.1
  • Kain, J.S., The Kain–Fritsch convective parameterization: an update (2004) Journal of Applied Meteorology, 43, pp. 170-181
  • Mayengon, R., Warm core cyclones in the Mediterranean (1984) Mariners Weather Log, 28, pp. 6-9
  • McTaggart-Cowan, R., Galarneau, T., Bosart, L., Milbrandt, J., Development and tropical transition of an Alpine lee cyclone. Part I: case analysis and evaluation of numerical guidance (2010) Monthly Weather Review, 138, pp. 2281-2307. , https://doi.org/10.1175/2009MWR3147.1
  • Miglietta, M.M., Laviola, S., Malvaldi, A., Conte, D., Levizzani, V., Price, C., Analysis of tropical-like cyclones over the Mediterranean sea through a combined modeling and satellite approach (2013) Geophysical Research Letters, 40, pp. 2400-2405. , https://doi.org/10.1002/grl.50432
  • Miglietta, M.M., Mastrangelo, D., Conte, D., Influence of physics parameterization schemes on the simulation of a tropical-like cyclone in the Mediterranean sea (2015) Atmospheric Research, 153, pp. 360-375
  • Miglietta, M.M., Moscatello, A., Conte, D., Mannarini, G., Lacorata, G., Rotunno, R., Numerical analysis of a Mediterranean "hurricane" over southeastern Italy: sensitivity experiments to sea surface temperature (2011) Atmospheric Research, 101, pp. 412-426
  • Mlawer, E.J., Taubman, S.J., Brown, P.D., Iacono, M.J., Clough, S.A., Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the long wave (1997) Journal of Geophysical Research, 102, pp. 16663-16682
  • Noh, Y., Cheon, W.G., Hong, S.Y., Raasch, S., Improvement of the k-profile model for the planetary boundary layer based on large eddy simulation data (2003) Boundary-Layer Meteorology, 107, pp. 401-427
  • Palmén, E.H., On the formation and structure of tropical cyclones (1948) Geophysica, 3, pp. 26-38
  • Picornell, M.A., Campins, J., Jansà, A., Detection and thermal description of medicanes from numerical simulation (2014) Natural Hazards and Earth System Sciences, 14, pp. 1059-1070. , https://doi.org/10.5194/nhess-14-1059-2014
  • Pytharoulis, I., Craig, G.C., Ballard, S.P., The hurricane-like Mediterranean cyclone of January 1995 (2000) Meteorological Applications, 7, pp. 261-279
  • Raveh-Rubin, S., Dry intrusions: Lagrangian climatology and dynamical impact on the planetary boundary layer (2017) Journal of Climate, 30, pp. 6661-6682
  • Raveh-Rubin, S., Flaounas, E., A dynamical link between deep atlantic extratropical cyclones and intense Mediterranean cyclones (2017) Atmospheric Science Letters, 18, pp. 215-221. , https://doi.org/10.1002/asl.745
  • Raveh-Rubin, S., Wernli, H., Large-scale wind and precipitation extremes in the Mediterranean: dynamical aspects of five selected cyclone events (2016) Quarterly Journal of the Royal Meteorological Society, 142, pp. 3097-3114. , https://doi.org/10.1002/qj.2891
  • Romilly, T.G., Gebremichael, M., Evaluation of satellite rainfall estimates over Ethiopian river basins (2011) Hydrology and Earth System Sciences, 15, pp. 1505-1514. , https://doi.org/10.5194/hess-15-1505-2011
  • Shapiro, M.A., Keyser, D., (1990), pp. 167-191. , Fronts, jet streams and the tropopause. In Newton, C.W. and Holopainen, E.O. (Eds.) Extratropical Cyclones The Erik Palmen Memorial Volume. Boston American Meteorological Society; Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Duda, D.M.B.M.G., Huang, X.Y., Wang, W., Powers, J.G., (2008), . A description of the advanced research WRF version 3. Boulder, CO NCAR. Technical Note 475; Sprenger, M., Wernli, H., The LAGRANTO Lagrangian analysis tool – version 2.0 (2015) Geoscientific Model Development, 8, pp. 2569-2586. , https://doi.org/10.5194/gmd-8-2569-2015
  • Tous, M., Romero, R., Meteorological environments associated with medicane development (2013) International Journal of Climatology, 33, pp. 1-14. , https://doi.org/10.1002/joc.3428
  • Tous, M., Romero, R., Ramis, C., Surface heat fluxes influence on medicane trajectories and intensification (2013) Atmospheric Research, 123, pp. 400-411
  • Wernli, H., Paulat, M., Hagen, M., Frei, C., SAL – a novel quality measure for the verification of quantitative precipitation forecasts (2008) Monthly Weather Review, 136, pp. 4470-4487
  • Winstanley, D., The North African flood disaster, September 1969 (1970) Weather, 25, pp. 390-403
  • Wu, D., Dong, X., Xi, B., Feng, Z., Kennedy, A., Mullendore, G., Gilmore, M., Tao, W.K., Impacts of microphysical scheme on convective and stratiform characteristics in two high precipitation squall line events (2013) Journal of Geophysical Research, Atmospheres, 118, pp. 11119-11135. , https://doi.org/10.1002/jgrd.50798
  • Yang, M.J., Braun, S.A., Chen, D.S., Water budget of typhoon Nari (2001) (2011) Monthly Weather Review, 139, pp. 3809-3828. , https://doi.org/10.1175/MWR-D-10-05090.1

Citas:

---------- APA ----------
Fita, L. & Flaounas, E. (2018) . Medicanes as subtropical cyclones: the December 2005 case from the perspective of surface pressure tendency diagnostics and atmospheric water budget. Quarterly Journal of the Royal Meteorological Society, 144(713), 1028-1044.
http://dx.doi.org/10.1002/qj.3273
---------- CHICAGO ----------
Fita, L., Flaounas, E. "Medicanes as subtropical cyclones: the December 2005 case from the perspective of surface pressure tendency diagnostics and atmospheric water budget" . Quarterly Journal of the Royal Meteorological Society 144, no. 713 (2018) : 1028-1044.
http://dx.doi.org/10.1002/qj.3273
---------- MLA ----------
Fita, L., Flaounas, E. "Medicanes as subtropical cyclones: the December 2005 case from the perspective of surface pressure tendency diagnostics and atmospheric water budget" . Quarterly Journal of the Royal Meteorological Society, vol. 144, no. 713, 2018, pp. 1028-1044.
http://dx.doi.org/10.1002/qj.3273
---------- VANCOUVER ----------
Fita, L., Flaounas, E. Medicanes as subtropical cyclones: the December 2005 case from the perspective of surface pressure tendency diagnostics and atmospheric water budget. Q. J. R. Meteorol. Soc. 2018;144(713):1028-1044.
http://dx.doi.org/10.1002/qj.3273