Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We extend the classical two-fluid magnetohydrodynamic (MHD) formalism to include quantum effects such as electron Fermi pressure, Bohm pressure, and spin couplings. At scales smaller than the electron skin-depth, the Hall effect and electron inertia must be taken into account, and can overlap with the quantum effects. We write down the full set of two-fluid quantumMHD(QMHD)and analyse the relative importance ofthese effects in the high-density environments of neutron star atmospheres and white dwarf interiors, finding that for a broad range of parameters all these effects are operative. Of all spin interactions we analyse only the spin-magnetic coupling, as it is linear in h(stroke) and consequently it is the strongest spin effect. We re-obtain the classical two-fluidMHD dispersion relations corresponding to the magnetosonic and Alfvén modes,modified by quantum effects. In the zero-spin case, for propagation parallel to the magnetic field, we find that the frequency of the fast mode is due to quantum effects modified by electron inertia, while the frequency of the Alfvén-slow sector has no quantum corrections. For perpendicular propagation, the fast-mode frequency is the same as for the parallel propagation plus a correction due only to classical two-fluid effects. When spin is considered, a whistler mode appears, which is due to two-fluid effects plus spin-magnetic interaction. There are no modifications due to spin for parallel propagation of magnetosonic and Alfvén waves, while for perpendicular propagation a dispersive term due to spin arises in the two-fluid expression for the fast magnetosonic mode. © 2018 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society.

Registro:

Documento: Artículo
Título:Normal modes in magnetized two-fluid spin quantum plasmas
Autor:Gómez, D.O.; Kandus, A.
Filiación:Departamento de Física, FCEyN-UBA, Ciudad Universitaria, Buenos Aire, 1428, Argentina
Instituto de Astronomia y Física del Espacio (IAFE CONICET-UBA), Ciudad Universitaria, Buenos Aires, 1428, Argentina
LATO-DCET-UESC, Rodovia Jorge Amado km 16 s/n, Ilhéus, BA, 45.662-900, Brazil
Palabras clave:MHD; Plasmas; Stars: neutron; White dwarfs
Año:2018
Volumen:481
Número:3
Página de inicio:3988
Página de fin:3999
DOI: http://dx.doi.org/10.1093/mnras/sty2537
Título revista:Monthly Notices of the Royal Astronomical Society
Título revista abreviado:Mon. Not. R. Astron. Soc.
ISSN:00358711
CODEN:MNRAA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00358711_v481_n3_p3988_Gomez

Referencias:

  • Ali, M., (2007) Phys. Lett. A, 366, p. 606
  • Andreev, P., (2015) Phys. Rev. E, 91
  • Andrés, N., Martin, L., Dmitruk, P., Gomez, D.O., (2014) Phys. Plasmas, 21
  • Andrés, N., Gonzalez, C., Martin, L., Dmitruk, P., Gomez, D.O., (2014) Phys. Plasmas, 21
  • Asenjo, F., (2012) Phys. Lett. A, 376, p. 2496
  • Biskamp, D., Schwarz, E., Zeiler, A., Celani, A., Drake, J.F., (1999) Phys. Plasmas, 6, p. 751
  • Brodin, G., Marklund, M., (2007) New. J. Phys, 9, p. 277
  • Brodin, G., Marklund, M., (2007) Phys. Rev. E, 76
  • Cross, J.E., Reville, B., Gregory, G., (2014) ApJ, 795, p. 59
  • Cui, Y., Lieber, C.M., (2001) Science, 291, p. 851
  • Ghosh, S., Siregar, E., Roberts, D.A., Goldstein, M.L., (1996) J. Geophys. Res, 101, p. 2493
  • Goldstein, M.L., Roberts, D.A., Fitch, C.A., (1994) J. Geophys. Res, 99, p. 11519
  • Haas, F., (2005) Phys. Plasmas, 12
  • Haas, F., (2005) Quantum Plasmas: An Hydrodynamic Approach. Springer-Verlag, New York
  • Haas, F., Garcia, L.G., Goedert, J., Manfredi, G., (2003) Phys. Plasmas, 10, p. 3858
  • Holland, P.R., (1993) The Quantum Theory of Motion: An Account of the de Broglie-Bohm Causal Interpretation of Quantum Mechanics, , Cambridge Univ. Press, Cambridge
  • Landau, L.D., Lifshitz, E.M., (1999) Electrodynamics of Continuous Media Course of Theoretical Physics, 8. , Butterworth & Heinemann, Oxford
  • Leamon, R.J., Matthaeus, W.H., Smith, C.W., Zank, G.P., Mullan, D.J., Oughton, S., (2000) ApJ, 537, p. 1054
  • Mahajam, S., Asenjo, F., (2011) Phys. Rev. Lett, 107
  • Marklund, M., Brodin, G., (2007) Phys. Rev. Lett, 98
  • Masood, W., Karim, S., Shah, H.A., (2010) Phys. Scr, 82
  • Matthaeus, W.H., Goldstein, M.L., (1982) J. Geophys. Res, 107
  • Misra, A.P., Ghosh, N.K., (2008) Phys. Lett. A, 372, p. 6412
  • Ridgers, C.P., (2017) J. Plasma Phys, 83
  • Saleem, H., Ahmad, A., Khan, S.A., (2008) Phys. Plasmas, 15
  • Shukla, P.K., (2007) Phys. Lett. A, 369, p. 312
  • Shukla, P.K., Stenflo, L., (2006) New J. Phys, 8, p. 111
  • Shukla, P.K., Ali, S., Stenflo, L., Marklund, M., (2006) Phys. Plasmas, 13
  • Smith, C.W., Mullan, N.F., Skoug, R.M., Steinberg, J., (2001) J. Geophys. Res, 106, p. 18625
  • Smith, C.W., Hamilton, K., Vasquez, B.J., Leamon, R.J., (2006) ApJ, 645, p. L85
  • Stenzel, R.L., (1999) J. Geophys. Res, 104, p. 14379
  • Su, W.B., Chang, C.S., Tsong, T.T., (2010) J. Phys. D: Appl. Phys, 43

Citas:

---------- APA ----------
Gómez, D.O. & Kandus, A. (2018) . Normal modes in magnetized two-fluid spin quantum plasmas. Monthly Notices of the Royal Astronomical Society, 481(3), 3988-3999.
http://dx.doi.org/10.1093/mnras/sty2537
---------- CHICAGO ----------
Gómez, D.O., Kandus, A. "Normal modes in magnetized two-fluid spin quantum plasmas" . Monthly Notices of the Royal Astronomical Society 481, no. 3 (2018) : 3988-3999.
http://dx.doi.org/10.1093/mnras/sty2537
---------- MLA ----------
Gómez, D.O., Kandus, A. "Normal modes in magnetized two-fluid spin quantum plasmas" . Monthly Notices of the Royal Astronomical Society, vol. 481, no. 3, 2018, pp. 3988-3999.
http://dx.doi.org/10.1093/mnras/sty2537
---------- VANCOUVER ----------
Gómez, D.O., Kandus, A. Normal modes in magnetized two-fluid spin quantum plasmas. Mon. Not. R. Astron. Soc. 2018;481(3):3988-3999.
http://dx.doi.org/10.1093/mnras/sty2537