Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Accumulated pollen sequences are used to infer temporal changes in vegetation composition. Pollen transport and dispersal by winds introduce large biases in the interpretation of pollen records. In order to calibrate the models used to infer past species distributions, human activities or climate, contemporary time series of pollen records are assessed and modelled. The Gaussian plume model assumes that pollen transport takes place in a neutral atmosphere and pollen contribution is even from all directions (isotropy). In this study, we analyse these assumptions with airborne pollen measurements of Weinmannia trichosperma, a forest tree which grows mainly on the western slopes of the Andes, along with other characteristic species of the steppe which develops in eastern Patagonia. Instead of the Gaussian plume mixing model that is usually employed in the theory of pollen analysis, we apply a full 3D Lagrangian dispersion model, which allows calculation of potential source distributions (footprint) from modelled backward trajectories of airborne pollen observations. Results show that neutral atmospheric conditions are properly assumed for the region. The footprint calculated from the modelled trajectories of a five-year record is consistent with the location of pollen sources but the footprint shape showed that pollen contribution is uneven due to the influence of transient weather systems. © 2018 Elsevier B.V.

Registro:

Documento: Artículo
Título:A case study of anisotropic airborne pollen transport in Northern Patagonia using a Lagrangian particle dispersion model
Autor:Pérez, C.F.; Bianchi, M.M.; Gassmann, M.I.; Tonti, N.; Pisso, I.
Filiación:Departamento de Ciencias de la Atmósfera y los Océanos (DCAO), Facultad de Ciencias Exactas y naturales, UBA, Pabellón 2, 2do piso, Ciudad Universitaria, CABA C1428EGA, Argentina
Instituto Nacional de Antropología y Pensamiento Latinoamericano (INAPL), 3 de febrero 1378CABA C1426BJN, Argentina
Norwegian Institute for Air Research (NILU), PO Box 100, Kjeller, 2027, Norway
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290CABA C1425FQB, Argentina
Palabras clave:Data treatment; Lagrangian model; Northern Patagonia; Pollen transport; Present; Quantitative reconstruction; airborne survey; anisotropy; dispersal; dispersion; environmental modeling; evergreen tree; human activity; Lagrangian analysis; paleoclimate; paleoenvironment; pollen; quantitative analysis; reconstruction; Andes; Patagonia; Weinmannia trichosperma
Año:2018
Volumen:258
Página de inicio:215
Página de fin:222
DOI: http://dx.doi.org/10.1016/j.revpalbo.2018.08.007
Título revista:Review of Palaeobotany and Palynology
Título revista abreviado:Rev. Palaeobot. Palynol.
ISSN:00346667
CODEN:RPPYA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00346667_v258_n_p215_Perez

Referencias:

  • Adams-Groom, B., Emberlin, J., Corden, J., Millington, W., Mullins, J., Predicting the start of the birch pollen season at London, Derby and Cardiff, United Kingdom, using a multiple regression model, based on data from 1987 to 1997 (2002) Aerobiologia, 18, pp. 117-123
  • Arya, S.P., Air Pollution Meteorology and Dispersion (1999), 1st Edition Oxford University Press; Arya, S.P., Introduction to Micrometeorology (2001), 2nd Edition Academic Press; Berman, A.L., Silvestri, G.E., Tonello, M.S., Differences between Last Glacial Maximum and present-day temperature and precipitation in southern South America (2016) Quat. Sci. Rev., 150, pp. 221-233
  • Berman, A.L., Silvestri, G.E., Rojas, M., Tonello, M.S., Accelerated greenhouse gases versus slow insolation forcing induced climate changes in southern South America since the Mid-Holocene (2017) Clim. Dyn., 48, pp. 387-404
  • Bianchi, M.M., Olabuenaga, S.E., A 3-year airborne pollen and fungal spores record in San Carlos de Bariloche, Patagonia, Argentina (2006) Aerobiologia, 22, pp. 247-257
  • Birks, H.J.B., Birks, H.H., Quaternary Palaeoecology (1980), Edward Arnold London; Birks, H.J.B., Gordon, A.D., Numerical Methods in Quaternary Pollen Analysis (1985), Academic Press London; Brioude, J., Angevine, W.M., McKeen, S.A., Hsie, E.-Y., Numerical uncertainty at mesoscale in a Lagrangian model in complex terrain (2012) Geosci. Model Dev., 5, pp. 1127-1136
  • Bunting, M.J., Middleton, R., Modelling pollen dispersal and deposition using HUMPOL software, including simulating wind roses and irregular lakes (2005) Rev. Palaeobot. Palynol., 134, pp. 185-196
  • Bunting, M.J., Twiddle, C.L., Middleton, R., Reconstructing past vegetation in mountain areas from pollen data: application of models of pollen dispersal and deposition (2008) Palaeogeogr. Palaeoclimatol. Palaeoecol., 259, pp. 77-91
  • Cabrera, A.L., Wilkins, A., Biogeografía de America Latina (1973), Editorial OEA Washington, DC; Campbell, I.D., McDonald, K., Flannigan, M.D., Kringayark, J., Long-distance transport of pollen into the Arctic (1999) Nature, 399, pp. 29-30
  • Cassiani, M., Stohl, A., Brioude, J., Lagrangian stochastic modelling of dispersion in the convective boundary layer with skewed turbulence conditions and a vertical density gradient: formulation and implementation in the FLEXPART model (2015) Bound.-Layer Meteorol., 154, pp. 367-390
  • Davis, M.B., On the theory of pollen analysis (1963) Am. J. Sci., 261, pp. 897-912
  • Dupont, L.M., Wyputta, U., Reconstructing pathways of aeolian pollen transport to the marine sediments along the coastline of SW Africa (2003) Quat. Sci. Rev., 22, pp. 157-174
  • Faegri, K., Iversen, J., Textbook of Pollen Analysis (1989), 4th Edition John Wiley & Sons Chichester; Flesch, T., Wilson, J., Lee, E., Backward-time Lagrangian stochastic dispersion models and their application to estimate gaseous emissions (1995) J. Appl. Meteorol., 34, pp. 1320-1333
  • Gaillard, M.-J., Sugita, S., Bunting, M.J., Middleton, R., Broström, A., Caseldine, C., Giesecke, T., Members, P.O.L.L.A.N.D.C.A.L., The use of modeling and simulation approach in reconstructing past landscapes from fossil pollen data: a review and results from the POLLANDCAL network (2008) Veg. Hist. Archaeobotany, 17, pp. 419-443
  • Gassmann, M.I., Pérez, C.F., Trajectories associated to regional and extra-regional pollen transport in the southeast of Buenos Aires province, Mar del Plata (Argentina) (2006) Int. J. Biometeorol., 50, pp. 280-291
  • Gifford, F.A., Jr., An outline of theories of diffusion in the lower layers of the atmosphere (1968) Meteorology and Atomic Energy, , D.H. Slade U.S. Atomic Energy Comission Oak Rodge, Tennessee, USA
  • Hanna, S.R., Briggs, G.A., Deardoff, J., Eagan, B.A., Gifford, F.A., Pasquill, F., Summary of recommendations made by the AMS Workshop on Stability Classification Schemes and Sigma Curves (1977) Bull. Am. Meteorol. Soc., 58, pp. 1305-1309
  • Hanna, S.R., Briggs, G.A., Hosker, R.P., Jr., Handbook on Atmospheric Diffusion. Technical Information Center U.S (1982) Department of Energy
  • Hirst, J.M., An automatic volumetric spore trap (1952) Ann. Appl. Biol., 39, pp. 257-265
  • Jackson, S.T., Lyford, M.E., Pollen dispersal models in Quaternary plant ecology: assumptions, parameters, and prescriptions (1999) Bot. Rev., 65, pp. 39-72
  • Jaffe, D., Anderson, T., Covert, D., Kotchenruther, R., Trost, B., Danielson, J., Simpson, W., Uno, I., Transport of Asian air pollution to North America (1999) Geophys. Res. Lett., 26, pp. 711-714
  • Kershaw, P., Moss, P., van der Kaars, S., Causes and consequences of long-term climatic variability on the Australian continent (2003) Freshw. Biol., 48, pp. 1274-1283
  • Köppen, W., Climatología (1948), Fondo Cultura Económica México; Kuparinen, A., Mechanistic models for wind dispersal (2006) Trends Plant Sci., 11, pp. 296-301
  • Kuparinen, A., Markkanen, T., Riikonen, H., Vesala, T., Modeling air-mediated dispersal of spores, pollen and seeds in forested areas (2007) Ecol. Model., 208, pp. 177-188
  • Lara, A., Rutherford, P., Montory, C., Bran, D., Pérez, A., Clayton, S., Ayesa, J., Iglesias, G., Mapeo de los tipos de vegetación de la Eco-Región Valdiviana, Proyecto binacional Chile-Argentina (1999) INTA-APN-UAch-FVSAWWF, EEA-INTA Bariloche. GIS map
  • Leclerc, M.Y., Thurtell, G.W., Footprint prediction of scalar fluxes using a Markovian analysis (1990) Bound.-Layer Meteorol., 52, pp. 247-258
  • Liu, M.K., Seinfeld, J.H., On the validity of grid and trajectory models of urban air pollution (1967) Atmos. Environ., 9, pp. 555-574
  • Mariani, M., Connor, S.E., Fletcher, M.-S., Theuerkauf, M., Kuneš, P., Jacobsen, G., Saunders, K.M., Zawadzki, A., How old is the Tasmanian cultural landscape? A test of landscape openness using quantitative land-cover reconstructions (2017) J. Biogeogr., 44, pp. 2410-2420
  • McCartney, H.A., Fitt, B.D.L., Construction of Dispersal Models (1985) Advances in Plant Pathology. Volume 3, Mathematical modeling of crop disease, , C.A. Gilligan Academic Press London
  • Panofsky, H.A., Dutton, J.A., Atmospheric Turbulence (1984), John Wiley & Sons Inc New York; Paruelo, J.M., Aguiar, M.R., León, R.J.C., Golluscio, R.A., Batista, W.B., The use of satellite imagery in quantitative phytogeography: a case study of Patagonia (Argentina) (1991) Quantitative Approaches to Phytogeography, , Kluwer Academic Publishers The Hague
  • Pasquill, A.S., Smith, F.B., Atmospheric Diffusion (1983), 3rd Edition Ellis Horwood Ltd; Pérez, C.F., Castañeda, M.E., Gassmann, M.I., Bianchi, M.M., A statistical study of Weinmannia pollen trajectories across the Andes (2009) Adv. Geosci., 22, pp. 79-84
  • Prado, L., Wainer, I., Chiessi, C., Mid-Holocene PMIP3/CMIP5 model results: intercomparison for the South American Monsoon System (2013) The Holocene, 23, pp. 1915-1920
  • Prentice, C.I., Pollen representation, source area and basin size: toward a unified theory of pollen analysis (1985) Quat. Res., 23, pp. 76-86
  • Prentice, C.I., Records of vegetation in time and space: the principles of pollen analysis (1988) Vegetation History, , B. Huntley T.I.I.I. Webb Kluwer Academic Publishers Dordrecht
  • Rantio-Lehtimäki, A., Short, medium and long range transported airborne particles in viability and antigenicity analyses (1994) Aerobiologia, 10, pp. 175-181
  • Rodean, H., (1996), Stochastic Lagrangian models of turbulent diffusion. Meteorological Monographs 26 (48). Boston, USA: American Meteorological Society; Seibert, P., Frank, A., Source – receptor matrix calculation with a Lagrangian particle dispersion model in backward mode (2004) Atmos. Chem. Phys., 4, pp. 51-63
  • Sofiev, M., Siljamo, P., Ranta, H., Rantio-Lehtimäki, A., Towards numerical forecasting of long-range air transport of birch pollen: theoretical considerations and a feasibility study (2006) Int. J. Biometeorol., 50, pp. 392-402
  • Stohl, A., Trajectory statistics – a new method to establish source - receptor relationships of air pollutants and its application to the transport of particulate sulphate in Europe (1996) Atmos. Environ., 30, pp. 579-587
  • Stohl, A., Computation, accuracy and applications of trajectories – a review and bibliography (1998) Atmos. Environ., 32, pp. 947-966
  • Stohl, A., Forster, C., Frank, A., Seibert, P., Wotawa, G., Technical note: the Lagrangian particle dispersion model FLEXPART version 6.2 (2005) Atmos. Chem. Phys., 5, pp. 2461-2474
  • Sugita, S., A model of pollen source area for an entire lake surface (1993) Quat. Res., 39, pp. 239-244
  • Sugita, S., Pollen representation of vegetation in quaternary sediments: theory and method in patchy vegetation (1994) J. Ecol., 82, pp. 881-897
  • Sugita, S., Theory of quantitative reconstruction of vegetation I: pollen from large sites REVEALS regional vegetation composition (2007) The Holocene, 17, pp. 229-241
  • Sugita, S., Theory of quantitative reconstruction of vegetation II: all you need is LOVE (2007) The Holocene, 17, pp. 243-257
  • Sutton, O.G., The problem of diffusion in the lower atmosphere (1947) Q. J. R. Meteorol. Soc., 73, pp. 257-281
  • Sutton, O.G., Micrometeorology (1953), McGraw-Hill New York; Tauber, H., Differential pollen dispersion and the interpretation of pollen diagrams (1965) Danmarks Geologiske Undersøgelse 2 Rk, p. 89
  • Tauber, H., Investigations of aerial pollen transport in a forested region (1977) Dansk Botanisk Arkiv, 32, pp. 1-121
  • Taylor, K.E., Stouffer, R.J., Meehl, G.A., An overview of CMIP5 and the experiment design (2012) Bull. Am. Meteorol. Soc., 93, pp. 485-498
  • Theuerkauf, M., Kuparinen, A., Joosten, H., Pollen productivity estimates strongly depend on assumed pollen dispersal (2013) The Holocene, 23, pp. 14-24
  • Turner, D.B., A diffusion model for an urban area (1964) J. Appl. Meteorol., 3, pp. 83-91
  • van de Water, P.K., Levetin, E., Contribution of upwind pollen sources to the characterization of Juniperus ashei phenology (2001) Grana, 40, pp. 133-141
  • van de Water, P.K., Keever, T., Main, C.E., Levetin, E., An assessment of predictive forecasting of Juniperus ashei pollen movement in the Southern Great Plains, USA (2003) Int. J. Biometeorol., 48, pp. 74-82
  • van Loon, H., Mid-season average zonal winds at sea level and at 500 mb south of 25 degrees south, and a brief comparison with the Northern Hemisphere (1964) J. Appl. Meteorol., 3, pp. 554-563
  • Webb, T.I.I.I., The appearance and disappearance of major vegetational assemblages: long-term vegetational dynamics in eastern North America (1987) Vegetation, 69, pp. 177-187
  • Whitlock, C., Bianchi, M.M., Bartlein, P., Markgraf, V., Marlon, J., Walsh, M., McCoy, N., Postglacial vegetation, climate and fire history along the east side of the Andes (lat 41-42.5 S), Argentina (2006) Quat. Res., 66, pp. 187-201
  • Wilson, J., Sawford, B., Review of Lagrangian stochastic models for trajectories in the turbulent atmosphere (1996) Bound. Layer Meteorol., 27, pp. 191-210
  • Xu, Q., Zhang, S., Gaillard, M.-J., Li, M., Cao, X., Tian, F., Li, F., Studies of modern pollen assemblages for pollen dispersal - deposition - preservation process understanding and for pollen-based reconstructions of past vegetation, climate, and human impact: a review based on case studies in China (2016) Quat. Sci. Rev., 149, pp. 151-166
  • Zanetti, P., Particle modeling and its application for simulating air pollution phenomena (1992) Environmental Modeling, , P. Melli P. Zanetti Computational Mechanics Publications Southampton, UK

Citas:

---------- APA ----------
Pérez, C.F., Bianchi, M.M., Gassmann, M.I., Tonti, N. & Pisso, I. (2018) . A case study of anisotropic airborne pollen transport in Northern Patagonia using a Lagrangian particle dispersion model. Review of Palaeobotany and Palynology, 258, 215-222.
http://dx.doi.org/10.1016/j.revpalbo.2018.08.007
---------- CHICAGO ----------
Pérez, C.F., Bianchi, M.M., Gassmann, M.I., Tonti, N., Pisso, I. "A case study of anisotropic airborne pollen transport in Northern Patagonia using a Lagrangian particle dispersion model" . Review of Palaeobotany and Palynology 258 (2018) : 215-222.
http://dx.doi.org/10.1016/j.revpalbo.2018.08.007
---------- MLA ----------
Pérez, C.F., Bianchi, M.M., Gassmann, M.I., Tonti, N., Pisso, I. "A case study of anisotropic airborne pollen transport in Northern Patagonia using a Lagrangian particle dispersion model" . Review of Palaeobotany and Palynology, vol. 258, 2018, pp. 215-222.
http://dx.doi.org/10.1016/j.revpalbo.2018.08.007
---------- VANCOUVER ----------
Pérez, C.F., Bianchi, M.M., Gassmann, M.I., Tonti, N., Pisso, I. A case study of anisotropic airborne pollen transport in Northern Patagonia using a Lagrangian particle dispersion model. Rev. Palaeobot. Palynol. 2018;258:215-222.
http://dx.doi.org/10.1016/j.revpalbo.2018.08.007