Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Chlorophyll fluorescence is widely used as an indicator of photosynthesis and physiological state of plants. Remote acquisition of fluorescence allows the diagnosis of large field extensions, even from satellite measurements. Nevertheless, fluorescence emerging from chloroplasts, the one directly connected to plant physiology, undergoes re-absorption processes both within the leaf and the canopy. Therefore, corrections of the observed canopy fluorescence, taking into account these two re-absorption processes may help to draw accurate inferences about plant health. Here, we show the theoretical development and experimental validation of a model that allows to retrieve the spectral distribution of the leaf fluorescence spectrum from that on top of canopy (TOC) using a correction factor which is a function of both canopy and soil reflectance, and canopy transmittance. Canopy fluorescence spectra corrected by our theoretical approach and normalized shows 95% correlation with the normalized fluorescence spectrum at leaf-level, thus validating the model. Therefore, our results provide a physical explanation and quantification for fluorescence re-absorption within the canopy, a phenomenon which has only been mentioned but never measured up to the date. From a more general perspective, this new analytical tool together with the one previously developed by Ramos and Lagorio (2004) allows to obtain the spectral distribution of chloroplast fluorescence spectrum from that on top of canopy (TOC). © 2017 Elsevier Inc.

Registro:

Documento: Artículo
Título:Modeling re-absorption of fluorescence from the leaf to the canopy level
Autor:Romero, J.M.; Cordon, G.B.; Lagorio, M.G.
Filiación:Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Buenos Aires, Argentina
CONICET - Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina
Universidad de Buenos Aires, Facultad de Agronomía, Área de Educación Agropecuaria, Buenos Aires, Argentina
CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Buenos Aires, Argentina
Palabras clave:Canopy; Chlorophyll fluorescence; Light re-absorption; Photophysical modeling; Remote sensing; Chlorophyll; Physiology; Remote sensing; Canopy; Chlorophyll fluorescence; Experimental validations; Light re-absorption; Photophysical models; Satellite measurements; Spectral distribution; Theoretical development; Fluorescence; accuracy assessment; chloroplast; fluorescence; measurement method; model validation; photoperiod; photosynthesis; physiological response; remote sensing; satellite data; visible spectrum
Año:2018
Volumen:204
Página de inicio:138
Página de fin:146
DOI: http://dx.doi.org/10.1016/j.rse.2017.10.035
Título revista:Remote Sensing of Environment
Título revista abreviado:Remote Sens. Environ.
ISSN:00344257
CODEN:RSEEA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00344257_v204_n_p138_Romero

Referencias:

  • Agati, G., Response of the in vivo chlorophyll fluorescence spectrum to environmental factors and laser excitation wavelength (1998) Pure Appl. Opt., 7 (4), p. 797
  • Agati, G., Fusi, F., Mazzinghi, P., A simple approach to evaluation of the reabsorption of chlorophyll fluorescence spectra in intact leaves (1993) J. Photochem. Photobiol. B., 17, p. 163
  • Andersen, H., Reutebuch, S.E., Mcgaughey, R.J., Active remote sensing (2006) Comp. Appl. Sust. F. Man., pp. 43-66
  • Bah, T., Inkscape: Guide to a Vector Drawing Program (Digital Short Cut) (2009), Pearson Education 978-0-13-276414-8; Baldridge, A.M., Hook, S.J., Grove, C.I., Rivera, G., The ASTER spectral library version 2.0 (2009) Remote Sens. Environ., 113 (4), pp. 711-715
  • Cendrero-Mateo, M.P., Moran, M.S., Papuga, S.A., Thorp, K.R., Alonso, L., Moreno, J., Ponce-Campos, G., Wang, G., Plant chlorophyll fluorescence: active and passive measurements at canopy and leaf scales with different nitrogen treatments (2016) J. Exp. Bot., 67 (1), pp. 275-286
  • Cerovic, Z.G., Goulas, Y., Gorbunov, M., Briantais, J.M., Camenen, L., Moya, I., Fluorosensing of water stress in plants. Diurnal changes of the mean lifetime and yield of chlorophyll fluorescence measured simultaneously and at distance with a τ - LIDAR and a modified PAM-fluorimeter, in maize, sugar beet and Kalanchoë (1996) Remote Sens. Environ., 58, pp. 311-321
  • Cordon, G., Lagorio, M.G., Re-absorption of chlorophyll fluorescence in leaves revisited. A comparison of correction models (2006) J. Photochem. Photobiol. Sci., 5, pp. 735-740
  • Cordón, G.B., Lagorio, M.G., Optical properties of the adaxial and abaxial faces of leaves. Chlorophyll fluorescence, absorption and scattering coefficients (2007) Photochem. Photobiol. Sci., 6 (8), pp. 873-882
  • Damm, A., Elbers, J., Erler, A., Gioli, B., Hamdi, K., Hutjes, R., Kosvancova, M., Rascher, U., Remote sensing of sun induced fluorescence to improve modeling of diurnal courses of gross primary production (GPP) (2010) Glob. Chang. Biol., 16, pp. 171-186
  • Daumard, F., Goulas, Y., Champagne, S., Fournier, A., Ounis, A., Olioso, A., Moya, I., Continuous monitoring of canopy level sun-induced chlorophyll fluorescence during the growth of a sorghum field (2012) IEEE Trans. Geosci. Remote Sens., 50 (11), pp. 4292-4300
  • Dawson, T.P., Curran, P.J., Plummer, S.E., LIBERTY - modeling the effects of leaf biochemical concentration on reflectance spectra (1998) Remote Sens. Environ., 65 (1), pp. 50-60
  • Féret, J.B., François, C., Asner, G.P., Gitelson, A.A., Martin, R.E., Bidel, L.P., Ustin, S.L., Jacquemoud, S., PROSPECT-4 and 5: advances in the leaf optical properties model separating photosynthetic pigments (2008) Remote Sens. Environ., 112 (6), pp. 3030-3043
  • Fournier, A., Daumard, F., Champagne, S., Ounis, A., Goulas, Y., Moya, I., Effect of canopy structure on sun-induced chlorophyll fluorescence (2012) ISPRS J. Photogramm. Remote Sens., 68, pp. 112-120
  • Franck, F., Juneau, P., Popovic, R., Resolution of the photosystem I and photosystem II contributions to chlorophyll fluorescence of intact leaves at room temperature (2002) Biochim. Biophys. Acta, 1556 (2), pp. 239-246
  • Freedman, A., Cavender-Bares, J., Kebabian, P.L., Bhaskar, R., Scott, H., Bazzaz, F.A., Remote sensing of solar-excited plant fluorescence as a measure of photosynthetic rate (2002) Photosynthetica, 40, pp. 127-132
  • Gastellu-Etchegorry, J.P., Grau, E., Lauret, N., (2012) DART: A 3D Model for Remote Sensing Images and Radiative Budget of Earth Surfaces in Modeling and Simulation in Engineering, , Prof. Catalin Alexandru InTech
  • Gitelson, A., Buschmann, C., Lichtenthaler, H., Leaf chlorophyll fluorescence corrected for reabsorption by means of absorption and reflectance measurements (1998) J. Plant Physiol., 152, p. 283
  • Goulas, Y., Ounis, A., Daumard, F., Baret, F., Chelle, M., Moya, I., Assessment of canopy fluorescence yield with airborne passive and active measurements: the Calsif Project (2014) 5th Int. Work. Rem. Sens.Veg. Fluoresc., 1
  • Grace, J., Nichol, C., Disney, M., Lewis, P., Quaife, T., Bowyer, P., Can we measure terrestrial photosynthesis from space directly, using spectral reflectance and fluorescence? (2007) Glob. Ch. Biol., 13 (7), pp. 1484-1497
  • Guanter, L., Alonso, L., Gómez-Chova, L., Amorós-López, J., Vila, J., Moreno, J., Estimation of solar-induced vegetation fluorescence from space measurements (2007) Geophys. Res. Lett., 34 (8)
  • Guanter, L., Zhang, Y., Jung, M., Joiner, J., Voigt, M., Berry, J.A., Frankenberg, C., Griffis, T.J., Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence (2014) Proc. Natl. Acad. Sci. U. S. A., 111 (14), pp. E1327-E1333
  • He, L., Chen, J.M., Liu, J., Mo, G., Joiner, J., Angular normalization of GOME-2 sun-induced chlorophyll fluorescence observation as a better proxy of vegetation productivity (2017) Geophys. Res. Lett., 44 (11), pp. 5691-5699
  • Hosgood, B., Jacquemoud, S., Andreoli, G., Verdebout, J., Pedrini, G., Schmuck, G., Leaf optical Properties Experiment 93 (LOPEX93) (1995), http://opticleaf.ipgp.fr, Ispra Italy; Iriel, A., Mendes Novo, J., Cordon, G.B., Lagorio, M.G., Atrazine and methyl viologen effects on chlorophyll-a fluorescence revisited. Implications in photosystems emission and ecotoxicity (2014) J. Photochem. Photobiol., 90, p. 107
  • Jacquemoud, S., Baret, F., PROSPECT: a model of leaf optical properties spectra (1990) Remote Sens. Environ., 34, pp. 75-91
  • Jacquemoud, S., Bacour, C., Poilve, H., Frangi, J.P., Comparison of four radiative transfer models to simulate plant canopies reflectance: direct and inverse mode (2000) Remote Sens. Environ., 74 (3), pp. 471-481
  • Jacquemoud, S., Verhoef, W., Baret, F., Bacour, C., Zarco-Tejada, P.L., Asner, G.P., François, C., Ustin, S.L., PROSPECT + SAIL models: a review of use for vegetation characterization (2009) Remote Sens. Environ., 113, pp. S56-S66
  • Joiner, J., Yoshida, Y., Vasilkov, A.P., Middleton, E.M., Campbell, P.K.E., Yoshida, Y., Kuze, A., Corp, L.A., Filling-in of near-infrared solar lines by terrestrial fluorescence and other geophysical effects: simulations and space-based observations from SCIAMACHY and GOSAT (2012) Atmos. Meas. Tech., 5 (4), pp. 809-829
  • Julitta, T., Corp, L.A., Rossini, M., Burkart, A., Cogliati, S., Davies, N., Hom, M., Colombo, R., Comparison of sun-induced chlorophyll fluorescence estimates obtained from four portable field spectroradiometer (2016) Remote Sens., 8 (2), p. 122. , (doi:10.3390/rs8020122)
  • Kokaly, R.F., Clark, R.N., Swayze, G.A., Livo, K.E., Hoefen, T.M., Pearson, N.C., Wise, R.A., Klein, A.J., USGS spectral library version 7 (2017) Us Geog. Surv.
  • Lagorio, M.G., Dicelio, L., Litter, M., San Román, E., Modeling of fluorescence quantum yields of supported dyes. Aluminum carboxyphthalocyanine on cellulose (1998) J. Chem. Soc. Faraday Trans., 94, pp. 419-425
  • Lichtenthaler, H.K., Buschmann, C., Knapp, C., How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio RFd of leaves with the PAM fluorometer (2005) Photosynthetica, 43 (3), pp. 379-393
  • Ligot, G., Balandier, P., Courbaud, B., Claessens, H., Forest radiative transfer models: which approach for which application? (2014) Can. J. For. Res., 44 (5), pp. 385-397
  • Liu, L., Liu, X., Wang, Z., Zhang, B., Measurement and analysis of bidirectional SIF emissions in wheat canopies (2016) IEEE Trans. Geosci. Rem. Sens., 54 (5), pp. 2640-2651
  • Louis, J., Ounis, A., Ducruet, J.-M., Evain, S., Laurila, T., Thum, T., Aurela, M., Moya, I., Remote sensing of sunlight-induced chlorophyll fluorescence and reflectance of Scots pine in the boreal forest during spring recovery (2005) Remote Sens. Environ., 96, pp. 37-48
  • Maxwell, K., Johnson, G.N., Chlorophyll fluorescence — a practical guide (2000) J. Exp. Bot., 51 (345), pp. 659-668
  • Mazzinghi, P., Agati, G., Fusi, F., (1994) Interpretation and Physiological Significance of Blue-green and Red Vegetation Fluorescence in International Geoscience and Remote Sensing Symposium (IGARSS) '94, p. 640. , T.I. Stein (Pasadena, CA)
  • Meroni, M., Colombo, R., Leaf level detection of solar induced chlorophyll fluorescence by means of a subnanometer resolution spectroradiometer (2006) Remote Sens. Environ., 103, pp. 438-448
  • Meroni, M., Rossini, M., Guanter, L., Alonso, L., Rascher, U., Colombo, R., Moreno, J., Remote sensing of solar-induced chlorophyll fluorescence: review of methods and applications (2009) Remote Sens. Environ., 113, pp. 2037-2051
  • Migliavacca, M., Perez-Priego, O., Rossini, M., El-Madany, T.S., Moreno, G., van der Tol, C., Rascher, U., Reichstein, M., Plant functional traits and canopy structure control the relationship between photosynthetic CO2 uptake and far-red sun-induced fluorescence in a Mediterranean grassland under different nutrient availability (2017) New Phytol., 214, pp. 1078-1091
  • Moya, I., Cerovic, Z., (2004) Remote Sensing of Chlorophyll Fluorescence: Instrumentation and Analysis. Chlorophyll-a Fluorescence: A Signature of Photosynthesis, pp. 429-445. , G.C. Papageorgiou Springer Dordrecht, The Netherlands (doi:10.1007/978-1-4020-3218-9_16)
  • North, P.R.J., Three-dimensional forest light interaction model using a Monte Carlo method (1996) IEEE Trans. Geosc. Rem. Sens., 34, pp. 946-956
  • Ounis, A., Bach, J., Mahjoub, A., Daumard, F., Moya, I., Goulas, Y., A new airborne LiDAR for remote sensing of canopy fluorescence and vertical profile (2016) EPJ Web of Conferences, 119
  • Pedrós, R., Goulas, Y., Jacquemoud, S., Louis, J., Moya, I., FluorMODleaf: a new leaf fluorescence emission model based on the PROSPECT model (2010) Remote Sens. Environ., 114, pp. 155-167
  • Pfündel, E., Estimating the contribution of photosystem I to total leaf chlorophyll fluorescence (1998) Photosynth. Res., 56, p. 185. , (doi:10.1023/A:1006032804606)
  • Pinto, F., Müller-Linow, M., Schickling, A., Cendrero-Mateo, M.P., Ballvora, A., Rascher, U., Multiangular observation of canopy sun-induced chlorophyll fluorescence by combining imaging spectroscopy and stereoscopy (2017) Remote Sens., 9, p. 415
  • Porcar-Castell, A., Tyystjärvi, E., Atherton, J., van der Tol, C., Flexas, J., Pfündel, E.E., Erhard, E., Berry, J.A., (2014) J. Exp. Bot., , https://doi.org/10.1093/jxb/eru191, Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges. doi: (eru191)
  • Ramos, M.E., Lagorio, M.G., True fluorescence spectra of leaves (2004) J. Photochem. Photobiol. Sci., 3, p. 1063. , (doi:10.1039/B406525E)
  • Ramos, M.E., Lagorio, M.G., A model considering light reabsorption processes to correct in vivo chlorophyll fluorescence spectra in apples (2006) Photochem. Photobiol. Sci., 5, pp. 508-512
  • Rascher, U., CEFLES2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands (2009) Biogeosci. Discuss., 6 (1)
  • Rienzo, J.A., Di, Casanoves, F., Balzarini, M.G., Gonzalez, L., Tablada, M., Robledo, Y.C., InfoStat Versión 2011. Grupo InfoStat, FCA (2011), 8, pp. 195-199. , Universidad Nacional de Córdoba Argentina; Rossini, M., Meroni, M., Celesti, M., Cogliati, S., Julitta, T., Panigada, C., Rascher, U., Colombo, R., Analysis of red and far-red sun-induced chlorophyll fluorescence and their ratio in different canopies based on observed and modeled data (2016) Remote Sens., 8 (5), p. 412
  • Stuckens, J., Verstraeten, W.W., Delalieux, S., Swennen, R., Coppin, P., A dorsiventral leaf radiative transfer model: development, validation and improved model inversion techniques (2009) Remote Sens. Environ., 113, pp. 2560-2573
  • Vilfan, N., van der Tol, C., Muller, O., Rascher, U., Verhoef, W., Fluspect-B: a model for leaf fluorescence, reflectance and transmittance spectra (2016) Remote Sens. Environ., 186, pp. 596-615
  • van der Walt, S., Colbert, S.C., Varoquaux, G., The NumPy array: a structure for efficient numerical computation (2011) Comput. Sci. Eng., 13 (2), pp. 22-30
  • Wittenberghe, S., van, Alonso, L., Verrelst, J., Hermans, I., Valcke, R., Veroustraete, F., Moreno, J., Samson, R., A field study on solar-induced chlorophyll fluorescence and pigment parameters along a vertical canopy gradient of four tree species in an urban environment (2014) Sci. Total Environ., 466, pp. 185-194
  • Zelle, J.M., Python Programming: An Introduction to Computer Science (2004), Franklin, Beedle & Associates Inc; Zhao, F., Dai, X., Verhoef, W., Guo, Y., van der Tol, C., Li, Y., Huang, Y., FluorWPS: a Monte Carlo ray-tracing model to compute sun-induced chlorophyll fluorescence of three-dimensional canopy (2016) Remote Sens. Environ., 187, pp. 385-399

Citas:

---------- APA ----------
Romero, J.M., Cordon, G.B. & Lagorio, M.G. (2018) . Modeling re-absorption of fluorescence from the leaf to the canopy level. Remote Sensing of Environment, 204, 138-146.
http://dx.doi.org/10.1016/j.rse.2017.10.035
---------- CHICAGO ----------
Romero, J.M., Cordon, G.B., Lagorio, M.G. "Modeling re-absorption of fluorescence from the leaf to the canopy level" . Remote Sensing of Environment 204 (2018) : 138-146.
http://dx.doi.org/10.1016/j.rse.2017.10.035
---------- MLA ----------
Romero, J.M., Cordon, G.B., Lagorio, M.G. "Modeling re-absorption of fluorescence from the leaf to the canopy level" . Remote Sensing of Environment, vol. 204, 2018, pp. 138-146.
http://dx.doi.org/10.1016/j.rse.2017.10.035
---------- VANCOUVER ----------
Romero, J.M., Cordon, G.B., Lagorio, M.G. Modeling re-absorption of fluorescence from the leaf to the canopy level. Remote Sens. Environ. 2018;204:138-146.
http://dx.doi.org/10.1016/j.rse.2017.10.035