Artículo

Knaeps, E.; Ruddick, K.G.; Doxaran, D.; Dogliotti, A.I.; Nechad, B.; Raymaekers, D.; Sterckx, S. "A SWIR based algorithm to retrieve total suspended matter in extremely turbid waters" (2015) Remote Sensing of Environment. 168:66-79
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In ocean colour remote sensing, the use of Near Infra Red (NIR) spectral bands for the retrieval of Total Suspended Matter (TSM) concentration in turbid and highly turbid waters has proven to be successful. In extremely turbid waters (TSM>100mgL-1) however, these bands are less sensitive to increases in TSM. Here it is proposed to use Short Wave Infra Red (SWIR) spectral bands between 1000 and 1300nm for these extreme cases. This SWIR spectral region is subdivided into two regions, SWIR-I (1000nm to 1200nm) and SWIR-II (1200nm to 1300nm) which correspond to local minima in the pure water absorption spectrum. For both spectral regions the water reflectance signal was measured in situ with an ASD spectrometer in three different extremely turbid estuarine sites: Scheldt (Belgium), Gironde (France), and Río de la Plata (Argentina), along with the TSM concentration. A measurable water reflectance was observed for all sites in SWIR-I, while in the SWIR-II region the signal was not significant compared to the Signal-to-Noise Ratio (SNR) of current Ocean Colour (OC) sensors. For the spectral band at 1020nm (present in Ocean and Land Colour Instrument - OLCI, onboard Sentinel-3) and at 1071nm, an empirical single band TSM algorithm is defined which is valid for both the Gironde and Scheldt estuarine sites. This means that a single algorithm can be applied for both sites without expensive recalibration. The relationship between TSM and SWIR reflectance at 1020 and 1071nm is linear and did not show any saturation for the concentrations measured here (up to 1400mgL-1), while saturation was observed for the NIR wavelengths, as expected. Hence, for extremely turbid waters it is advised to switch from NIR to SWIR-I wavelengths to estimate TSM concentration. This was demonstrated for an airborne hyperspectral dataset (Airborne Prism Experiment, APEX) from the Gironde estuary having several spectral bands in the SWIR-I. The empirical single band SWIR TSM algorithm was applied to the atmospherically corrected scene providing a TSM concentration map of the Gironde from mouth to more upstream with concentrations expected in this region ranging from a few to several hundreds mgL-1. These results, i.e. the existence of a single relationship for the Scheldt and Gironde, not showing any decrease of sensitivity, highlights the importance of having SWIR bands in future ocean colour sensors for studying extremely turbid rivers, coastal areas and estuaries in the world. A further implication of these results is that there is a TSM limit for application of atmospheric correction algorithms which assume zero SWIR marine reflectance. That limit is defined here as function of wavelength and sensor noise level. © 2015 Elsevier Inc.

Registro:

Documento: Artículo
Título:A SWIR based algorithm to retrieve total suspended matter in extremely turbid waters
Autor:Knaeps, E.; Ruddick, K.G.; Doxaran, D.; Dogliotti, A.I.; Nechad, B.; Raymaekers, D.; Sterckx, S.
Filiación:Flemish Institute for Technological Research (VITO), Belgium
Royal Belgian Institute for Natural Sciences (RBINS), Operational Directorate Natural Environments, Belgium
Laboratoire d'Océanographie de Villefranche (LOV), UMR 7093, CNRS/UPMC, France
Instituto de Astronomía y Física del Espacio (IAFE), CONICET/UBA, Argentina
Palabras clave:Extremely turbid; Short wave infra red; Total suspended matter; Water; Absorption spectroscopy; Algorithms; Color; Estuaries; Infrared devices; Oceanography; Reflection; Remote sensing; Water; Water absorption; Airborne prism experiments; Atmospheric correction algorithm; Concentration maps; Extremely turbid; Ocean colour remote sensing; Sensor noise level; Short wave infrared; Total suspended matter; Signal to noise ratio; algorithm; atmospheric correction; concentration (composition); data set; estuarine environment; near infrared; ocean color; remote sensing; sensor; signal-to-noise ratio; spectral reflectance; suspended load; turbidity; wavelength; France; Gironde Estuary; Rio de la Plata; Westerschelde
Año:2015
Volumen:168
Página de inicio:66
Página de fin:79
DOI: http://dx.doi.org/10.1016/j.rse.2015.06.022
Título revista:Remote Sensing of Environment
Título revista abreviado:Remote Sens. Environ.
ISSN:00344257
CODEN:RSEEA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00344257_v168_n_p66_Knaeps

Referencias:

  • Aurin, D.A., Dierssen, H.M., Advantages and limitations of ocean color remote sensing in CDOM-dominated, mineral-rich coastal and estuarine waters (2012) Remote Sensing of Environment, 125, pp. 181-197
  • Aurin, D.A., Dierssen, H.M., Twardowski, M., Roesler, C., Optical complexity in Long Island Sound and implications for coastal ocean color remote sensing (2010) Journal of Geophysical Research, 115
  • Biesemans, J., Sterckx, S., Knaeps, E., Vreys, K., Adriaensen, S., Hooyberghs, J., Image processing workflows for airborne remote sensing (2007) Proceedings 5th EARSeL Workshop on Imaging Spectroscopy. Bruges, Belgium, April 23-25 2007
  • Blondeau-Patissier, D., Brando, V.E., Oubelkheir, K., Dekker, A.G., Clementson, L.A., Daniel, P., Bio-optical variability of the absorption and scattering properties of the Queensland inshore and reef waters, Australia (2009) Journal of Geophysical Research, 114, pp. 1-24
  • Bowers, D.G., Boudjelas, S., Harker, G.E.L., The distribution of fine suspended sediments in the surface waters of the Irish Sea and its relation to tidal stirring (1998) International Journal of Remote Sensing, 19 (14), pp. 2789-2805
  • (1989) Estudio para la evaluación de la contaminación en el Río de la Plata. Capítulo I. Aspectos Geológicos, pp. 1-72. , Comisión Administradora del Río de la Plata, Buenos Aires
  • Castaing, P., (1981) Le transfert à l'océan des suspensions estuariennes. Cas de la Gironde, 701, p. 530. , (State PhD Thesis), University Bordeaux 1
  • Chen, M.S., Wartel, S., Van Eck, B., Van Maldegem, D., Suspended matter in the Scheldt estuary (2005) Hydrobiologia, 540, pp. 79-104
  • Chen, J., Yin, S., Xiao, R., Xu, Q., Lin, C., Deriving remote sensing reflectance from turbid case II waters using green-shortwave infrared bands based model (2014) Advances in Space Research, 53 (8), pp. 1229-1238
  • De Haan, J.F., Hovenier, J.W., Kokke, J.M.M., Van Stokkom, H.T.C., Removal of atmospheric influences on satellite-borne imagery: a radiative transfer approach (1991) Remote Sensing of Environment, 37, pp. 1-21
  • De Haan, J.F., Kokke, J.M.M., (1996) Remote sensing algorithm development toolkit I Operationalization of atmospheric correction methods for tidal and inland waters. (Netherlands Remote Sensing Board (BCRS) publication, p. 91. , Rijkswaterstaat Survey Dept. Technical Report
  • Depetris, P.J., Griffin, J.J., Suspended load in the Rio de la Plata drainage basin (1968) Sedimentology, 11, pp. 53-60
  • Doerffer, R., MERIS case 1 validation: Performance of the NN case 2 water algorithm for case 1 water (2006) MERIS Validation Team Meeting, ESA ESRIN, Frascati, 20-24 March, 2006
  • Dogliotti, A.I., Ruddick, K.G., Nechad, B., Doxaran, D., Knaeps, E., A single algorithm to retrieve turbidity from remotely-sensed data in all coastal and estuarine waters (2015) Remote Sensing of Environment, 156, pp. 157-168
  • Dogliotti, A.I., Ruddick, K., Nechad, B., Lasta, C., Improving water reflectance retrieval from MODIS imagery in the highly turbid waters of La Plata River (2011) Proceedings of VI International Conference "Current Problems in Optics of Natural Waters", , Publishing House "Nauka" of RAS, St. Petersburg, Russia
  • Doron, M., Bélanger, S., Doxaran, D., Babin, M., Spectral variations in the near-infrared ocean reflectance (2011) Remote Sensing of Environment, 115 (7), pp. 1617-1631
  • Doxaran, D., Cherukuru, R.C.N., Lavender, S.J., Inherent and apparent optical properties of turbid estuarine waters: measurements, modelling and application to remote sensing (2006) Applied Optics, 45, pp. 2310-2324
  • Doxaran, D., Froidefond, J.M., Castaing, P., Babin, M., Dynamics of the turbidity maximum zone in a macrotidal estuary (the Gironde, France): Observations from field and MODIS satellite data (2009) Estuarine, Coastal and Shelf Science, 81, pp. 321-332
  • Doxaran, D., Froidefond, J.M., Lavender, S., Castaing, P., Spectral signature of highly turbid waters application with SPOT data to quantify suspend particulate matter concentrations (2002) Remote Sensing of Environment, 81, pp. 149-161
  • Etcheber, H., (1978) Etude de la repartition et du comportement de quelques oligo-éléments métalliques (Zn, Pb, Cu et Ni) dans le complexe fluvio-estuarien de la Gironde, p. 209. , (State PhD Thesis), University Bordeaux 1, France
  • Gege, P., Fries, J., Haschberger, P., Schötz, P., Schwarzer, H., Strobl, P., Calibration facility for airborne imaging spectrometers (2009) ISPRS Journal of Photogrammetry & Remote Sensing, 64, pp. 387-397
  • Gordon, H.R., Brown, O.B., Evans, R.H., Brown, J.W., Smith, R.C., Baker, K.S., A semianalytical radiance model of ocean color (1988) Journal of Geophysical Research, 93 (D9), pp. 10909-10924
  • Islam, M.R., Begun, S.F., Yamaguchi, Y., Ogawa, K., Suspend sediments in the Ganges and Brahmaputra Rivers in Bangladesh: Observation from TM and AVHRR data (2001) Hydrological Processes, 15, pp. 493-509
  • Knaeps, E., Raymaekers, D., Sterckx, S., Ruddick, K., Dogliotti, A.I., In-situ evidence of non-zero reflectance in the OLCI 1020nm band for a turbid estuary (2012) Remote Sensing of Environment, 120, pp. 133-144. , (Sentinel Special issue)
  • Kou, L., Labrie, D., Chylek, P., Refractive índices of water and ice in the 0.65-2.5m spectral range (1993) Applied Optics, 32, pp. 3531-3540
  • Latouche, C., Etude des minéreaux argileux des formations graveleuse Plio-Quaternaires des feuilles géologiques au 1/80000 de Bordeaux et de Lesparre (1971) Bulletin du Bureau de Recherches Géologique et Minières, Section 1, (1), pp. 25-34
  • Loisel, H., Morel, A., Non-isotropy of the upward radiance field in typical coastal (Case 2) waters (2001) International Journal of Remote Sensing, 22 (2-3), pp. 275-295
  • López Laborde, J., Nagy, G.J., Hydrography and sediment transport (1999) Characteristics of the Rio de la Plata. Estuaries of South America: Their geomorphology and dynamics, pp. 137-159. , Springer-Verlag, Berlin, (Chap. 7), G.M. Perillo, E.M. Pino, M.C. Piccolo (Eds.)
  • Mobley, C.D., Estimation of the remote-sensing reflectance from above-surface measurements (1999) Applied Optics, 38, pp. 7442-7455
  • Moore, G., Lavender, S., Kratzer, S., Icely, J., Huot, J.-P., The MERIS bright pixel atmospheric correction: evolution, performance assessment and validation for the MERIS 3rd reprocessing (2010) Proceedings of the Ocean Optics XX conference held in Anchorage, USA, 27th September-1st October 2010
  • Morel, A., Gentilli, B., Diffuse reflectance of oceanic waters. III. Implication of bidirectionality for the remote-sensing problem (1996) Applied Optics, 30 (30), pp. 4427-4438
  • Nechad, B., Ruddick, K.G., Park, Y., Calibration and validation of a generic multisensor algorithm for mapping of Total Suspended Matter in turbid waters (2010) Remote Sensing of Environment, 114 (4), pp. 854-866
  • Pope, R.M., Fry, E.S., Absorption spectrum (380-700nm) of pure water. II. Integrating cavity measurements (1997) Applied Optics, 36, pp. 8710-8723
  • Röttgers, R., Brockmann, C., Doerffer, R., Fischer, J., Hollstein, A., Lavender, S., (2012) STSE-WaterRadiance, final report
  • Ruddick, K.G., Cauwer, V.D., Park, Y.J., Moore, G., Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters (2006) Limnology and Oceanography, 51, pp. 1167-1179
  • Shen, F., Salama, S., Zhou, Y., Li, J., Su, Z., Kuang, D., Remote-sensing reflectance characteristics of highly turbid estuarine waters - A comparative experiment of the Yangtze River and the Yellow River (2010) International Journal of Remote Sensing, 31 (10), pp. 2639-2654
  • Shi, W., Wang, M., An assessment of the black ocean pixel assumption for MODIS SWIR bands (2009) Remote Sensing of Environment, 113, pp. 1587-1597
  • Shi, W., Wang, M., Ocean reflectance spectra at the red, near-infrared, and shortwave infrared from highly turbid waters: A study in the Bohai Sea, Yellow Sea, and East China Sea (2014) Limnology and Oceanography, 59 (2), pp. 427-444
  • Wang, M., Shi, W., The NIR-SWIR combined atmospheric correction approach for MODIS ocean color data processing (2007) Optics Express, 15, pp. 15722-15733
  • Zibordi, G., Mélin, F., Berthon, J.-F., Holben, B., Slutsker, I., Giles, D., AERONET-OC: A network for the validation of ocean color primary products (2009) Journal of Atmospheric and Oceanic Technology, 26, pp. 1634-1651

Citas:

---------- APA ----------
Knaeps, E., Ruddick, K.G., Doxaran, D., Dogliotti, A.I., Nechad, B., Raymaekers, D. & Sterckx, S. (2015) . A SWIR based algorithm to retrieve total suspended matter in extremely turbid waters. Remote Sensing of Environment, 168, 66-79.
http://dx.doi.org/10.1016/j.rse.2015.06.022
---------- CHICAGO ----------
Knaeps, E., Ruddick, K.G., Doxaran, D., Dogliotti, A.I., Nechad, B., Raymaekers, D., et al. "A SWIR based algorithm to retrieve total suspended matter in extremely turbid waters" . Remote Sensing of Environment 168 (2015) : 66-79.
http://dx.doi.org/10.1016/j.rse.2015.06.022
---------- MLA ----------
Knaeps, E., Ruddick, K.G., Doxaran, D., Dogliotti, A.I., Nechad, B., Raymaekers, D., et al. "A SWIR based algorithm to retrieve total suspended matter in extremely turbid waters" . Remote Sensing of Environment, vol. 168, 2015, pp. 66-79.
http://dx.doi.org/10.1016/j.rse.2015.06.022
---------- VANCOUVER ----------
Knaeps, E., Ruddick, K.G., Doxaran, D., Dogliotti, A.I., Nechad, B., Raymaekers, D., et al. A SWIR based algorithm to retrieve total suspended matter in extremely turbid waters. Remote Sens. Environ. 2015;168:66-79.
http://dx.doi.org/10.1016/j.rse.2015.06.022