Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

A spectroradiometer able to measure up to 2500nm has been used to measure the reflectance for the Ocean and Land Color Instrument (OLCI) 1020nm band. In July and October 2010 two measurement campaigns were organized at the Scheldt river to collect reflectance spectra and corresponding Total Suspended Matter (TSM) concentration and turbidity. A wide range of TSM concentration was covered from 15 to 402mgL -1. The measurements show a significant increase in reflectance between 950 and 1150nm, corresponding to a decrease in the pure water absorption coefficient. A high correlation was observed between the reflectance at 1020 and 1071nm and TSM concentration. The results were confirmed by simulations with Hydrolight and by the analysis of airborne Airborne Prism EXperiment (APEX) imagery. © 2012 Elsevier Inc.

Registro:

Documento: Artículo
Título:In situ evidence of non-zero reflectance in the OLCI 1020nm band for a turbid estuary
Autor:Knaeps, E.; Dogliotti, A.I.; Raymaekers, D.; Ruddick, K.; Sterckx, S.
Filiación:Flemish Institute for Technological Research (VITO), Remote Sensing Unit (TAP), Boeretang 200, B-2400 Mol, Belgium
Management Unit of the North Sea Mathematical Models (MUMM), Royal Belgian Institute for Natural Sciences (RBINS), 100 Gulledelle, B-1200 Brussels, Belgium
Instituto de Astronomía y Física del Espacio (CONICET-UBA), Pab. IAFE, Ciudad. Universitaria, 1428 Buenos Aires, Argentina
Palabras clave:Black pixel assumption; OLCI; SWIR; Water; Airborne prism experiments; Black pixels; Hydrolight; In-situ; Measurement campaign; OLCI; Pure water; Reflectance spectrum; Scheldt; Spectro-radiometers; SWIR; Total suspended matter; Turbidity; Water; Reflection; absorption coefficient; airborne sensing; color; correlation; estuarine environment; in situ measurement; ocean color; pixel; radiometer; reflectance; suspended load; turbidity; water; Scheldt River
Año:2012
Volumen:120
Página de inicio:133
Página de fin:144
DOI: http://dx.doi.org/10.1016/j.rse.2011.07.025
Título revista:Remote Sensing of Environment
Título revista abreviado:Remote Sens. Environ.
ISSN:00344257
CODEN:RSEEA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00344257_v120_n_p133_Knaeps

Referencias:

  • Arndt, S., Vanderborght, J.-P., Regnier, P., Diatom growth response to physical forcing in a macrotidal estuary: Coupling hydrodynamics, sediment transport, and biogeochemistry (2007) Journal of Geophysical Research, 112
  • Baeyens, W., Van Eck, V., Lambert, C., Wollast, R., Goeyens, L., General description of the Scheldt estuary (1998) Hydrobiologia, 366, pp. 1-14
  • Boardman, J.W., Post-ATREM polishing of AVIRIS apparent reflectance data using EFFORT: A lesson in accuracy versus precision (1998) Summaries of the 7th JPL Airborne Earth Science Workshop, 1, p. 53. , JPL Pub., 97-21
  • Bowers, D.G., Boudjelas, S., Harker, G.E.L., The distribution of fine suspended sediments in the Irish Sea and its dependence on tidal stirring (1998) International Journal of Remote Sensing, 19, pp. 2789-2805
  • Bricaud, A., Morel, A., Light attenuation and scattering by phytoplanktonic cells: A theoretical modeling (1986) Applied Optics, 25 (4), pp. 571-580
  • Chen, D., Huang, J., Jackson, T.J., Vegetation water content estimation for corn and soybeans using spectral indices derived from MODIS near- and short-wave infrared bands (2005) Remote Sensing of Environment, 98 (2-3), pp. 225-236
  • Chen, Z., Curran, P., Hansom, J.D., Derivative reflectance spectroscopy to estimate suspended sediment concentration (1992) Remote Sensing of Environment, 40 (1), pp. 67-77
  • De Haan, J.F., Hovenier, J.W., Kokke, J.M.M., Van Stokkom, H.T.C., Removal of atmospheric influences on satellite-borne imagery: A radiative transfer approach (1991) Remote Sensing of Environment, 37, pp. 1-21
  • De Haan, J.F., Kokke, J.M.M., Remote sensing algorithm development toolkit I: Operationalization of atmospheric correction methods for tidal and inland waters (Netherlands Remote Sensing Board (BCRS)) publication (1996) Rijkswaterstaat Survey Dept. Technical Report, p. 91
  • Doxaran, D., Froidefond, J.M., Castaing, P., Remote-sensing reflectance of turbid sediment-dominated waters. Reduction of sediment type variations and changing illumination conditions effects by use of reflectance ratios (2003) Applied Optics, 42, pp. 2623-2634
  • (2005) Water quality - European reference method for the Determination of suspended solids - Method by filtration through glass fibre filters, , European Committee for Standardization (CEN), EN 872
  • Fettweis, M., Sas, M., Monbaliu, J., Seasonal, neap-spring and tidal variations of cohesive sediment concentrations in the Scheldt estuary (1998) Belgium, Estuarine, Coastal and Shelf Science, 47, pp. 21-36
  • Gege, P., Fries, J., Haschberger, P., Schötz, P., Schwarzer, H., Strobl, P., Calibration facility for airborne imaging spectrometers (2009) ISPRS Journal of Photogrammetry and Remote Sensing, 64, pp. 387-397
  • Gordon, H.R., Wang, M., Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A preliminary algorithm (1994) Applied Optics, 33 (3), pp. 443-452
  • Hooker, S.B., Lazin, G., The SeaBOARR-99 field campaign (2000) NASA Technical Memorandum 2000-206892, 8, p. 46
  • Itten, K.I., Dell'Endice, F., Hueni, A., Kneubühler, M., Schläpfer, D., Odermatt, D., APEX - The hyperspectral ESA Airborne Prism Experiment (2008) Sensors, 8 (10), pp. 6235-6259
  • Knaeps, E., Sterckx, S., Raymaekers, D., A seasonally robust empirical algorithm to retrieve suspended sediment concentrations in the Scheldt river (2010) Remote Sensing, 2 (9), pp. 2040-2059
  • Kou, L., Labrie, D., Chylek, P., Refractive indices of water and ice in the 0.65-2.5m spectral range (1993) Applied Optics, 32, pp. 3531-3540
  • Lavender, S.J., Pinkerton, M.H., Moore, G.F., Aiken, J., Blondeau-Patissier, D., Modification to the atmospheric correction of SeaWiFS ocean color images over turbid waters (2005) Continental Shelf Research, 25, pp. 539-555
  • Mobley, C.D., Estimation of the remote-sensing reflectance from above-surface measurements (1999) Appied Optics, 38, pp. 7442-7455
  • Moore, G.F., Aiken, J., Lavender, S.J., The atmospheric correction of water colour and the quantitative retrieval of suspended particulate matter in Case II waters: Application to MERIS (1999) International Journal of Remote Sensing, 20 (9), pp. 1713-1734
  • Morel, A., Prieur, L., Analysis of variations in ocean color (1977) Limnology and Oceanography, 22 (4), pp. 709-722
  • Nechad, B., Ruddick, K.G., Neukermans, G., Calibration and validation of a generic multisensor algorithm for mapping of turbidity in coastal waters (2009) Proceedings of SPIE "Remote Sensing of the Ocean, Sea Ice, and Large Water Regions", Berlin, Germany, 31 August 2009
  • Nechad, B., Ruddick, K.G., Park, Y., Calibration and validation of a generic multisensor algorithm for mapping of Total Suspended Matter in turbid waters (2010) Remote Sensing of Environment, 114 (4), pp. 854-866
  • Pope, R.M., Fry, E.S., Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements (1997) Applied Optics, 36, pp. 8710-8723
  • Ruddick, K., De Cauwer, V., Park, Y., Moore, G., Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters (2006) Limnology and Oceanography, 51, pp. 1167-1179
  • Ruddick, K.G., Ovidio, F., Rijkeboer, M., Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters (2000) Applied Optics, 39, pp. 897-912
  • Sgavetti, M., Longhi, I., Meli, S., Pompilio, L., Accuracy in mineral identification: Image spectral and spatial resolutions and mineral spectral properties (2006) Annals of Geophysics, 49 (1)
  • Shi, W., Wang, M., An assessment of the ocean black pixel assumption for the MODIS SWIR bands (2009) Remote Sensing of Environment, 113, pp. 1587-1597
  • Snyder, W.A., Arnone, R.A., Davis, C.O., Goode, W., Gould, R.W., Ladner, S., Optical scattering and backscattering by organic and inorganic particulates in U.S. Coastal waters (2008) Applied Optics, 47 (5), pp. 666-677
  • Sterckx, S., Knaeps, E., Ruddick, K., Detection and correction of adjacency effects in hyperspectral airborne data of coastal and inland waters: The use of the near infrared similarity spectrum (2011) International Journal of Remote Sensing, 32 (21), pp. 6479-6505
  • Stumpf, R.P., Arnone, R.A., Gould, R.W., Martinolich, P.M., Ransibrahmanakul, V., (2003), 22. , A partially coupled ocean-atmosphere model for retrieval of water-leaving radiance from SeaWiFS in coastal waters, SeaWiFS Postlaunch Technical Repor Series, NASA Tech. Memo. 2003-206892, S. B. Hooker and E. R. Firestone, Eds., p51thomampe; Tassan, S., Ferrari, G.M., An alternative approach to absorption measurements of aquatic particles retained on filters (1995) Limnology and Oceanography, 40, pp. 1358-1368
  • Tilstone, G., Moore, G., Sorensen, K., Doerffer, R., Rottgers, R., Ruddick, K.G., REVAMP regional validation of MERIS chlorophyll products in North Sea coastal waters: Protocols document (2003) Proceedings of MERIS and AATSR Calibration and Geophysical Validation (MAVT-2003), , European Space Agency Publication, Frascati, WPP-233
  • Toole, D.A., Siegel, D.A., Menzies, D.W., Neumann, M.J., Smith, R.C., Remote-sensing reflectance determinations in the coastal ocean environment: Impact of instrumental characteristics and environmental variability (2000) Applied Optics, 3 (39), pp. 456-469
  • Wang, M., Shi, W., The NIR-SWIR combined atmospheric correction approach for MODIS ocean color data processing (2007) Optics Express, 15, pp. 15722-15733
  • (2008) ECO 3-measurement sensor user's guide, , Wetlabs, Inc
  • Zibordi, G., Holben, B., Slutsker, I., Giles, D., D'Alimonte, D., Mélin, F., AERONET-OC: A network for the validation of ocean color primary product (2009) Journal of Atmospheric and Oceanic Technology, 26, pp. 1634-1651

Citas:

---------- APA ----------
Knaeps, E., Dogliotti, A.I., Raymaekers, D., Ruddick, K. & Sterckx, S. (2012) . In situ evidence of non-zero reflectance in the OLCI 1020nm band for a turbid estuary. Remote Sensing of Environment, 120, 133-144.
http://dx.doi.org/10.1016/j.rse.2011.07.025
---------- CHICAGO ----------
Knaeps, E., Dogliotti, A.I., Raymaekers, D., Ruddick, K., Sterckx, S. "In situ evidence of non-zero reflectance in the OLCI 1020nm band for a turbid estuary" . Remote Sensing of Environment 120 (2012) : 133-144.
http://dx.doi.org/10.1016/j.rse.2011.07.025
---------- MLA ----------
Knaeps, E., Dogliotti, A.I., Raymaekers, D., Ruddick, K., Sterckx, S. "In situ evidence of non-zero reflectance in the OLCI 1020nm band for a turbid estuary" . Remote Sensing of Environment, vol. 120, 2012, pp. 133-144.
http://dx.doi.org/10.1016/j.rse.2011.07.025
---------- VANCOUVER ----------
Knaeps, E., Dogliotti, A.I., Raymaekers, D., Ruddick, K., Sterckx, S. In situ evidence of non-zero reflectance in the OLCI 1020nm band for a turbid estuary. Remote Sens. Environ. 2012;120:133-144.
http://dx.doi.org/10.1016/j.rse.2011.07.025