Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

S-wave splitting from local earthquakes within the Nazca plate that are deeper than the interplate seismogenic zone enabled the determination of the fast velocity direction, Φ, and the lag time, δt, in the forearc of the overriding plate. Data were collected from 20 seismic stations, most of which were temporary, deployed between ~33.5°S and ~34.5°S and included part of the normal subduction section to the south and part of the transitional section to flat subduction to the north. The fast velocity direction has a complex pattern with three predominant directions northwest–southeast, north–south and northeast–southwest and relatively high δt. A quality evaluation of the highest measurements enabled us to identify possible cycle skipping in some of the measurements, which could be responsible for the large observed lag time. We consider that most of the anisotropy that was observed in the forearc is probably located in the mantle wedge, and a minor part is located in the crust. The complex pattern of splitting parameters when the anisotropy is associated at the mantle wedge could be the result of three-dimensional variations in the subducting Nazca plate at these latitudes. Also, similarities between the splitting parameters and the principal compressional stress direction from Pliocene and Quaternary rocks suggest that the anisotropy in the crust could originate by tectonic local stress. © 2015, Springer Basel.

Registro:

Documento: Artículo
Título:S-Local-Wave Seismic Anisotropy in the Forearc Above the Subducted Nazca Plate Between 33°S and 34.5°S
Autor:Nacif, S.; Triep, E.G.
Filiación:CONICET, Consejo Nacional de Investigaciones Científicas Y Técnicas, Buenos Aires, Argentina
Instituto Geofísico Sismológico F. Volponi, Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de San Juan, San Juan, Argentina
Palabras clave:intraplate events; Nazca plate; Seismic anisotropy; subduction zone; Anisotropy; Seismology; Shear waves; Dimensional variations; intraplate events; Nazca plate; Quality evaluation; Seismic anisotropy; Seismogenic zones; Subduction zones; Velocity directions; Tectonics; forearc basin; intraplate process; Nazca plate; S-wave; seismic anisotropy; subduction zone; wave splitting
Año:2016
Volumen:173
Número:4
Página de inicio:1143
Página de fin:1156
DOI: http://dx.doi.org/10.1007/s00024-015-1165-z
Título revista:Pure and Applied Geophysics
Título revista abreviado:Pure Appl. Geophys.
ISSN:00334553
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00334553_v173_n4_p1143_Nacif

Referencias:

  • Anderson, M.L., Zandt, G., Triep, E., Fouch, M., and Beck, S. (2004), Anisotropy and mantle flow in the Chile-Argentina subduction zone from shear wave splitting analysis, Geophys. Res. Lett. 31, L23608, doi; Anderson, M.L., and Zandt, G. (2005), Multiple Layers of Anisotropy in the Chile-Argentina Subduction Zone, South America, Eos Trans. AGU, 85(47), Fall Meet. Suppl., Chile; Anderson, M.L., Alvarado, P., Zandt, G., and Beck, S. (2007), Geometry and brittle deformation of the subducting Nazca Plate Central Chile and Argentina, Geophys. J. Int. 171 (1), 419–434; Aster, R.C., and Shearer, P.M. (1992), Initial shear wave particle motions and stress constraints at the Anza Seismic Network, Geophys. J. Int. 108, 740–748; Barazangi, M., and Isacks, B.L (1976), Spatial distribution of earthquakes and subduction of the Nazca plate beneath South America, Geology 4(11), 686–692; Berens, P. 2009. CircStat: A MATLAB Toolbox for Circular Statistics. Journal of Statistical Software 31(10); Boness, N.L., and Zoback, M.D. (2004), Stress induced seismic velocity anisotropy and physical properties in the SAFOD pilot hole in Parkfield, CA, Geophys. Res. Lett. 31, L15S17, doi; Bostock, M. G., and Christensen, N. I., (2012), Split from slip and schist: Crustal anisotropy beneath northern Cascadia from non-volcanic tremor, J. Geophys. Res., 117, B08303, doi; Bowman, J. R., and Ando, M. A. (1987), Shear wave splitting in the upper mantle wedge above the Tonga subduction zone, Geophys. J. R. astron. Soc. 88, 25–41; Brocher, T., and Christensen, N. (1990), Seismic anisotropy due to preferred mineral orientation observed in shallow crustal rocks in southern Alaska, Geology 18, 737–740; Cahill, T., and Isacks, B.L. (1992), Seismicity and shape of the subducted Nazca plate, J. Geophys. Res. 97, 17503–17529; Christensen, N.I. (1984), The magnitude, symmetry and origin of upper mantle anisotropy from fabric analyses of ultramafic tectonites, Geophys. J. R. astr. Soc. 76, 89–111; Collings, R., Rietbrock, A., Lange, D., Tilmann, F., Nippress, S. and Natawidjaja, D., (2013), Seismic anisotropy in the Sumatra subduction zone, J. Geophys. Res., 118, 5372–5390, doi; Crampin, S. (1978), Seismic wave propagation through a cracked solid: Polarization as a possible dilatancy diagnostic, Geophys. J. R. Astron. Soc. 53, 467–496; Crampin, S. (1986), Anisotropy and transverse isotropy, Geophys. Prospect. 34, 94–99; Crampin, S. (1987), Geological and industrial implications of extensive dilatancy anisotropy, Nature 328, 491–496; Currie, C.A., Cassidy, J.F., and Hyndman, R.D., (2001), A regional study of shear wave splitting above the Cascadia subduction zone: margin-parallel crustal stress, Geophys. Res. Lett., 28, 659–662; DeMets, C., Gordon, R., Argus, D.F., and Stein, S., (1990), Current plate motions, Geophys. J. Int. 101, 425–478; Eberle, M.A., Grasset, O., and Sotin, C. (2002), A numerical study of the interaction of the mantle wedge, subducting slab, and overriding plate, Phys. Earth Planet. Inter. 134, 191–202; Farías, M., Tectonique, erosion et evolution du relief dans les Andes du Chili Central AU Cours du Neogene (Thesis Doctoral, Toulose University III, 238 p., 2007); Fischer, K.M., Parmentier, E.M., Stine, A.R., and Wolf, E. (2000), Modeling anisotropy and plate-driven flow in the Tonga subduction zone back arc, J. Geophys. Res. 105, 181–191; Furukawa, Y. (1993), Depth of the decoupling plate interface and thermal structure under arcs, J. Geophys. Res. 98, 20005–20013; Gilbert, H., Beck, S., and Zandt, G. (2006), Lithospheric and upper mantle structure of central Chile and Argentina, Geophys. J. Int. 165, 383–398; Hall, C.E., Fischer, K.M., Parmentier, E.M., and Blackman, D.K. (2000), The influence of plate motions on three-dimensional back arc mantle flow and shear wave splitting, J. Geophys. Res. 105, 28009–28033; Hammond, J. O. S., Wookey, J., Kaneshima, S., Inoue, H., Yamashina, T., and Harjadi, P., (2010), Systematic variation in anisotropy beneath the mantle wedge in the Java-Sumatra subduction system from shear-wave splitting, Phys. Earth Planet. Inter., 178(3–4), 189–201, doi; Heit, B., Yuan, X., Bianchi, M., Sodoudi, F., and Kind, R. (2008), Crustal thickness estimation beneath the southern central Andes at 30°S and 36°S from S wave receiver function analysis, Geophys. J. Int. 174 (1), 249–254; Helffrich, G., Wookey, J., and Bastow, I., The Seismic Analysis Code A Primer and User’s Guide (Cambridge University Press, Imperial College London; Hildreth, W., and Moorbath, S., 1988. Crustal contributions to arc magmatism in the Andes of Central Chile. Contributions to Mineralogy and Petrology 98(4), 455–489; Hiramatsu, Y., Ando, M., Tsukuda, T., and Ooida, T. (1998), Three-dimensional image of the anisotropic bodies beneath central Honshu, Japan, Geophys. J. Int. 135, 801–816; Holtzman, B.K., Kohlstedt, D.L., Zimmerman, M.E., Heidelback, F., Hiraga, T., and Hustoft, J. (2003), Melt segregation and strain partitioning: implications for seismic anisotropy and mantle flow, Science 301, 1227–1230; Ida, Y. (1983), Convection in the mantle wedge above the slab and tectonic processes in subduction zones, J. Geophys. Res., 88, 7449–7456; Ismaïl, B.W., and Mainprice, D. (1998), An olivine fabric database: an overview of upper mantle fabrics and seismic anisotropy, Tectonophysics 196, 145–157; Jung, H., and Karato, S.I. (2001), Water-induced fabric transitions in olivine, Science 293, 1460–1462; Jung, H., Katayama, I., Jiang, Z., Hiraga, T., and Karato, S. (2006), Effect of water and stress on the lattice-preferred orientation of olivine, Tectonophysics 421, 1–22; Katayama, I., Jung H., and Karato, S. (2004), New type of olivine fabric from deformation experiments at modest water content and low stress, Geology 32, 1045–1048; Katayama, I., Karato, S., and Brandon, M. (2005), Evidence of high water content in the deep upper mantle inferred from deformation microstructures, Geology 33, 613–616; Katayama, I., and Karato, S. (2006), Effect of temperature on the B- to C-type olivine fabric transition and implication for flow pattern in subduction zones, Phys. Earth Planet. Inter. 157, 33–45; Kay, S., Godoy, E., and Kurtz, A. (2005), Episodic arc migration, crustal thickening, subduction erosion, and magmatism in the south-central Andes, GSA Bulletin, 117 (1–2), 67–88; Kern, H., and Weng, H. R., (1990), Fabric-related velocity anisotropy and shear wave splitting in rocks from the Santa Rosa Mylonite Zone, California, J. Geophys. Res. 95 (B7), 11213–11223. doi; Kendrick, E., Bevis, M., Smalley, R.J., Brooks, B.A., Barriga, R., Lauría, E., and Souto, L.P. (2003), The Nazca-South America Euler vector and its rate of change, J. South Am. Earth Sci. 16, 125–131; Kneller, E.A., van Keken, P.E., Karato, S., and Park, J. (2005), B-type olivine fabric in the mantle wedge: insights from high-resolution non-Newtonian subduction zone models, Earth Planet. Sci. Lett. 237, 781–797; Kneller, E., van Keken, P. (2007), Trench-parallel flow and seismic anisotropy in the Mariana and Andean subduction systems, Nature, Letters, 450, 1222–1226; Kneller, E., van Keken, P., Katayama, I., and Karato, S. (2007), Stress, strain, and B-type olivine fabric in the fore-arc mantle: sensitivity tests using high resolution steady-state subduction zone models, J. Geophys. Res. 112, doi; Kneller, E.A., and van Keken, P.E. (2008), The effects of three-dimensional slab geometry on deformation in the mantle wedge: implications for shear wave anisotropy, Geochemistry, Geophysics, Geosystems 9, Q01003, doi; Kissling, E., Program VELEST USER’S GUIDE—Short introduction, (Technical report, Institute of Geophysics, ETH Zurich, Zurich, Switzerland, 1995); Lavenu, A., and Cembrano, J. (1999), Compressional and transpressional stress pattern for the Pliocene and Quaternary (Andes of central and southern Chile), Journal of Structural Geology 21, 1669–1691; Leary, P. C., Crampin, S., and McEvilly, T. (1990), Seismic fracture anisotropy in the earth’s crust: an overview, J. Geophys. Res. 95(11) 105–11 114; Levin, V., Roecker, S., Graham, P., and Hosseini, A. (2008), Seismic Anisotropy Indicators in Western Tibet: Shear Wave Splitting and Receiver Function Analysis, Tectonophysics 462(1–4), 99–108; Liener, B.R., and Havskov, J. (1995), A computer program for locating earthquakes locally, regionally and globally, Seismol. Res. Lett. 66, 26–36; Long, M., and van der Hilst, R. (2006), Shear wave splitting from local events beneath the Ryukyu arc: trench-parallel anisotropy in the mantle wedge, Phys. Earth Planet. Inter. 155, 300–312; MacDougall, J. G., Fisher, K. M., and Anderson, M. L. (2012), Seismic anisotropy above and below the subducting Nazca lithosphere in southern South America, J. Geophys. Res., 117(12), 306–12 328; Matcham, I., Savage, M.K., Gledhill, K.R. (2000), Distribution of seismic anisotropy in the subduction zone beneath the Wellington region, New Zealand, Geophysical Journal International 140, 1–10; Mehl L., and Hacker, B. R. (2003), Arc-parallel flow within the mantle wedge: Evidence from the accreted Talkeetna arc, south central Alaska, J. Geophys. Res. 108(B8), 2375, doi; Morley, M., Stuart, G., Kendall, J., and Reyners, M., (2006), Mantle wedge anisotropy in the Hikurangi subduction zone, central North Island, New Zealand, Geophys. Res. Lett., 33, L05301, doi; http://www.minas.upm.es/fundacion/jgs/images/pdf/xixconvocatoria/xix_a032013_nacif.pdf, Nacif, S., Sismotectónica de la placa de Nazca entre 33° y 35°S por debajo de la zona sismogénica de interplacas y anisotropía sísmica en la corteza y manto superior de la placa suprayacente (Doctoral Thesis, San Juan University, 223p, 2012); Rodi, W., Engdahl, E.R., Bergman, E.A., Waldhauser, F., Pavlis, G.L., Israelsson, H., Dewey, J. and Toksoz, M.N., (2002), A new grid-search multiple-event location algorithm and a comparison of methods, in The 24th Seismic Research Review, pp. 403–411; Rodi, W. (2006), Grid-search event location with non-Gaussian error models, Physics of the Earth and Planetary Interiors 158, 55–66; Rümpker, G., and Silver, P. G. (1998), Apparent shearwave splitting parameters in the presence of vertically varying anisotropy, Geophysical Journal International 135, 790–800; Teanby, N., Kendall, J., and van der Baan, M., (2004a), Automation of shear-wave splitting measurements using cluster analysis, Bull. Seism. Soc. Am, 94, 453–463; Saltzer, R. L., Gaherty, J. B., and Jordan, T. H. (2000), How are vertical shear wave splitting measurements affected by variations in the orientation of azimuthal anisotropy with depth? Geophysical Journal International 141, 374–390; Savage, M.K. (1999), Seismic anisotropy and mantle deformation: what we have learned from shear wave splitting, Rev. Geophys., 37, 65–105; Silver, P.G., and Chan, W.W. (1991), Shear-wave splitting and subcontinental mantle deformation, J. Geophys. Res. 96, 16 429–16 454; Skemer, P., Katayama, I., and Karato, S. (2006), Deformation fabrics of the Cima di Gagnone Peridotite Massif, Central Alpes, Swizerland: evidence of deformation under water-rich conditions at low temperatures, Contrib. Mineral. Petrol. 152, 43–51; Van Keken, P.E. (2003), The structure and dynamics of the mantle wedge. Earth Planet. Sci. Lett. 215, 323–338; Van Keken, P.E., Currie, C., King, S. D., Behn, M. D., Cagnioncle, A., He, J., Katz, R.F., Lin, S. Parmentier, E.M., Spiegelman, M., and Wang, K. (2008), A community benchmark for subduction zone modeling, Physics of the Earth and Planetary Interiors 171, 187–197; Vecsey, L., Plomerova, J., and Babuska, V., (2008), Shear-wave splitting measurements problems and solutions, Tectonophysics 462, 178–196; Walsh, E., Measuring Shear Wave Splitting using the Silver and Chan Method (Master Thesis, VICTORIA UNIVERSITY OF WELLINGTON, 181 p, 2013); Walsh, E., Arnold, R., and Savage, M. K., (2013), Silver and Chan revisited, J. Geophys. Res., 118, 5500–5515, doi; Wiens, D. A., and Smith, G. P., Seismological constrain on the structure and flow patterns within the mantle wedge, In Inside the subduction factory (ed. Eiler, J.) (AGU Washington, D.C., 2003) pp. 83–105; Wüstefeld, A., Bokelmann, G., Zaroli, C.M and Barruol, G. (2008), SplitLab: a shear-wave splitting environment in Matlab, Comput. Geosci. 34(5), 515–528; Yang Z., Sheehan A., and Shearer P. (2011), Stress-induced upper crustal anisotropy in southern California, J. Geophys. Res. 116, B02302, doi

Citas:

---------- APA ----------
Nacif, S. & Triep, E.G. (2016) . S-Local-Wave Seismic Anisotropy in the Forearc Above the Subducted Nazca Plate Between 33°S and 34.5°S. Pure and Applied Geophysics, 173(4), 1143-1156.
http://dx.doi.org/10.1007/s00024-015-1165-z
---------- CHICAGO ----------
Nacif, S., Triep, E.G. "S-Local-Wave Seismic Anisotropy in the Forearc Above the Subducted Nazca Plate Between 33°S and 34.5°S" . Pure and Applied Geophysics 173, no. 4 (2016) : 1143-1156.
http://dx.doi.org/10.1007/s00024-015-1165-z
---------- MLA ----------
Nacif, S., Triep, E.G. "S-Local-Wave Seismic Anisotropy in the Forearc Above the Subducted Nazca Plate Between 33°S and 34.5°S" . Pure and Applied Geophysics, vol. 173, no. 4, 2016, pp. 1143-1156.
http://dx.doi.org/10.1007/s00024-015-1165-z
---------- VANCOUVER ----------
Nacif, S., Triep, E.G. S-Local-Wave Seismic Anisotropy in the Forearc Above the Subducted Nazca Plate Between 33°S and 34.5°S. Pure Appl. Geophys. 2016;173(4):1143-1156.
http://dx.doi.org/10.1007/s00024-015-1165-z