Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The aim of this study was to characterize the dehydrin content in mature embryos of two quinoa cultivars, Sajama and Baer La Unión. Cultivar Sajama grows at 3600-4000 m altitude and is adapted to the very arid conditions characteristic of the salty soils of the Bolivian Altiplano, with less than 250 mm of annual rain and a minimum temperature of -1 °C. Cultivar Baer La Unión grows at sea-level regions of central Chile and is adapted to more humid conditions (800 to 1500 mm of annual rain), fertile soils, and temperatures above 5 °C. Western blot analysis of embryo tissues from plants growing under controlled greenhouse conditions clearly revealed the presence of several dehydrin bands (at molecular masses of approximately 30, 32, 50, and 55 kDa), which were common to both cultivars, although the amount of the 30 and 32 kDa bands differed. Nevertheless, when grains originated from their respective natural environments, three extra bands (at molecular masses of approximately 34, 38, and 40 kDa), which were hardly visible in Sajama, and another weak band (at a molecular mass of approximately 28 kDa) were evident in Baer La Unión. In situ immunolocalization microscopy detected dehydrin-like proteins in all axis and cotyledon tissues. At the subcellular level, dehydrins were detected in the plasma membrane, cytoplasm and nucleus. In the cytoplasm, dehydrins were found associated with mitochondria, rough endoplasmic reticulum cisternae, and proplastid membranes. The presence of dehydrins was also recognized in the matrix of protein bodies. In the nucleus, dehydrins were associated with the euchromatin. Upon examining dehydrin composition and subcellular localization in two quinoa cultivars belonging to highly contrasting environments, we conclude that most dehydrins detected here were constitutive components of the quinoa seed developmental program, but some of them (specially the 34, 38, and 40 kDa bands) may reflect quantitative molecular differences associated with the adaptation of both cultivars to contrasting environmental conditions. © 2008 Springer-Verlag.

Registro:

Documento: Artículo
Título:Detection and subcellular localization of dehydrin-like proteins in quinoa (Chenopodium quinoa Willd.) embryos
Autor:Carjuzaa, P.; Castellión, M.; Distéfano, A.J.; Del Vas, M.; Maldonado, S.
Filiación:Departamento de Biodiversidad Y Biología Experimental, Facultad de Ciencias Exactas Y Naturales, Ciudad de Buenos Aires, Buenos Aires, Argentina
Instituto de Biotecnología, Centro de Investigación de Ciencias Veterinarias Y Agronómicas, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires, Argentina
Instituto de Recursos Biológicos, Centro de Investigación de Recursos Naturales, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires, Argentina
Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, C1428EGA Ciudad de Buenos Aires, Argentina
Palabras clave:Chenopodium quinoa; Dehydrin; Environment; In situ immunolocalization; Quinoa cultivar; Western blot analysis; dehydrin proteins, plant; vegetable protein; article; cell fractionation; Chenopodium quinoa; meristem; metabolism; plant seed; prenatal development; protein transport; ultrastructure; Western blotting; Blotting, Western; Chenopodium quinoa; Meristem; Plant Proteins; Protein Transport; Seeds; Subcellular Fractions; Chenopodium quinoa
Año:2008
Volumen:233
Número:1-2
Página de inicio:149
Página de fin:156
DOI: http://dx.doi.org/10.1007/s00709-008-0300-4
Título revista:Protoplasma
Título revista abreviado:Protoplasma
ISSN:0033183X
CODEN:PROTA
CAS:dehydrin proteins, plant, 134711-03-8; Plant Proteins
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0033183X_v233_n1-2_p149_Carjuzaa

Referencias:

  • Allagulova, C.R., Gimalov, F.R., Shakirova, F.M., Vakhitov, V.A., The plant dehydrins: Structure and putative functions (2003) Biochemistry (Moscow), 68, pp. 945-951
  • Asghar, R., Fenton, R.D., Demason, D.A., Close, T.J., Nuclear and cytoplasmic localization of maize embryo and aleurone dehydrin (1994) Protoplasma, 177, pp. 87-94
  • Bertero, H.D., De La Vega, A.J., Correa, G., Jacobsen, S.-E., Mujica, A., Genotype and genotype-by-environment interaction effects for grain yield and grain size of quinoa (Chenopodium quinoa Willd.) as revealed by pattern analysis of international multi-environment trials (2004) Field Crops Res, 89, pp. 299-318
  • Borovskii, G.B., Stupnikova, I.V., Antipina, A.I., Downs, C.A., Voinikov, V.K., Accumulation of dehydrin-like proteins in the mitochondria of cold-treated plants (2000) J Plant Physiol, 156, pp. 797-800
  • Bradford, M., A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal Biochem, 72, pp. 248-254
  • Brini, F., Hanin, M., Lumbreras, V., Irar, S., Pagès, M., Masmoudi, K., Functional characterization of DHN-5, a dehydrin showing a differential phosphorylation pattern in two Tunisian durum wheat (Triticum durum Desf.) varieties with marked differences in salt and drought tolerance (2007) Plant Sci, 172, pp. 20-28
  • Campbell, S.A., Close, T.J., Dehydrins: Genes, proteins, and associations with phenotypic traits (1997) New Phytol, 137, pp. 61-74
  • Close, T.J., Dehydrins: Emergence of a biochemical role of a family of plant dehydration proteins (1996) Physiol Plant, 97, pp. 795-803
  • Close, T.J., Dehydrins: A commonalty in the response of plants to dehydration and low temperature (1997) Physiol Plant, 100, pp. 291-296
  • Close, T.J., Lammers, P.J., An osmotic stress protein of cyanobacteria is immunologically related to plant dehydrins (1993) Plant Physiol, 101, pp. 773-779
  • Close, T.J., Kortt, A.A., Chandler, P.M., A cDNA-based comparison of dehydration-induced proteins (dehydrins) in barley and corn (1989) Plant Mol Biol, 13, pp. 95-108
  • Close, T.J., Fenton, R.D., Moonan, F., A view of plant dehydrins using antibodies specific to the carboxy terminal peptide (1993) Plant Mol Biol, 23, pp. 279-286
  • Crane, J., Miller, A.L., Van Roekel, J.W., Walters, C., Triacylglycerols determine the unusual storage physiology of Cuphea seed (2003) Planta, 217, pp. 699-708
  • Danyluk, J., Houde, M., Rassart, É., Sarhan, F., Differential expression of a gene encoding an acidic dehydrin in chilling sensitive and freezing tolerant gramineae species (1994) FEBS Lett, 344, pp. 20-24
  • Danyluk, J., Perron, A., Houde, M., Limin, A., Fowler, B., Benhamou, N., Sarhan, F., Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat (1998) Plant Cell, 10, pp. 623-638
  • Dure III, L., Crouch, M., Harada, J., Ho, T.H.D., Mundy, J., Quatrano, R., Thomas, T., Sung, Z.R., Common amino acid sequence domains among the LEA proteins of higher plants (1989) Plant Mol Biol, 12, pp. 475-486
  • Egerton-Warburton, L.M., Balsamo, R.A., Close, T.J., Temporal accumulation and ultrastructural localization of dehydrins in Zea mays (1997) Physiol Plant, 101, pp. 545-555
  • Ellis, R.H., Hong, T.D., Roberts, E.H., A low moisture content limit to logarithmic relations between seed moisture content and longevity (1988) Ann Bot, 61, pp. 405-408
  • Farrant, J.M., Pammenter, N.W., Berjak, P., Farnsworth, E.J., Vertucci, C.W., Presence of dehydrin-like proteins and levels of abscisic acid in recalcitrant (desiccation sensitive) seeds may be related to habitat (1996) Seed Sci Res, 6, pp. 175-182
  • Finch-Savage, W.E., Pramanik, S.K., Bewley, J.D., The expression of dehydrin proteins in desiccation-sensitive (recalcitrant) seeds of temperate trees (1994) Planta, 193, pp. 478-485
  • Gee, O.H., Probert, R.J., Coomber, S.A., "dehydrin-like" proteins and desiccation tolerance in seeds (1994) Seed Sci Res, 4, pp. 135-141
  • Goday, A., Jensen, A.B., Cualianezmacia, F.A., Alba, M.M., Figueras, M., Serratosa, J., Torrent, M., Pages, M., The maize abscisic acid-responsive protein RAB17 is located in the nucleus and interacts with nuclear-localization signals (1994) Plant Cell, 6, pp. 351-360
  • Harris, K.F., Pesic-Van Esbroeck, Z., Duffus, J.E., Moderate-temperature polymerization of LR White in a nitrogen atmosphere (1995) Microsc Res Tech, 32, pp. 264-265
  • Heyen, B.J., Alsheikh, M.K., Smith, E.A., Torvik, C.F., Seals, D.F., Randall, S.K., The calcium-binding activity of a vacuole-associated, dehydrin-like protein is regulated by phosphorylation (2002) Plant Physiol, 130, pp. 675-687
  • Ismail, A.M., Hall, A.E., Close, T.J., Purification and partial characterization of a dehydrin involved in chilling tolerance during seedling emergence of cowpea (1999) Plant Physiol, 120, pp. 237-244
  • Jensen, A.B., Goday, A., Figueras, M., Jessop, A.C., Pages, M., Phosphorylation mediates the nuclear targeting of the maize RAB17 protein (1998) Plant J, 13, pp. 691-697
  • Kermode, A.R., Approaches to elucidate the basis of desiccation-tolerance in seeds (1997) Seed Sci Res, 7, pp. 75-95
  • Kiyosue, T., Yamaguchi-Shinozaki, K., Shinosaki, K., Kamada, H., Harada, H., CDNA cloning of ECP40, an embryogenic-cell protein in carrot, and its expression during somatic and zygotic embryogenesis (1993) Plant Mol Biol, 21, pp. 1053-1068
  • Koag, M.-C., Fenton, R.D., Wilkens, S., Close, T.J., The binding of maize DHN1 to lipid vesicles. Gain of structure and lipid specificity (2003) Plant Physiol, 131, pp. 309-316
  • Koster, K.L., Leopold, A.C., Sugars and desiccation tolerance in seeds (1988) Plant Physiol, 88, pp. 829-832
  • Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4 (1970) Nature, 227, pp. 680-685
  • Lopez, C.G., Banowetz, G.M., Peterson, C.J., Kronstad, W.E., Dehydrin expression and drought tolerance in seven wheat cultivars (2003) Crop Sci, 43, pp. 577-582
  • Momma, M., Haraguchi, K., Saito, M., Chikuni, K., Harada, K., Purification and characterization of the acid soluble 26-kDa polypeptide from soybean seeds (1997) Biosci Biotechnol Biochem, 61, pp. 1286-1291
  • Momma, M., Kaneko, S., Haraguchi, K., Matsukura, U., Peptide mapping and assessment of cryoprotective activity of 26/27 kD dehydrin from soybean seeds (2003) Biosci Biotechnol Biochem, 67, pp. 1832-1835
  • Mueller, J.K., Heckathorn, S.A., Fernando, D., Identification of a chloroplast dehydrin in leaves of mature plants (2003) Int J Plant Sci, 164, pp. 535-542
  • Neven, L., Haskell, G.D.W., Hofig, A., Li, Q.B., Guy, C.L., Characterization of a spinach gene responsive to low-temperature and water-stress (1993) Plant Mol Biol, 21, pp. 291-305
  • Nylander, M., Svensson, J., Palva, E.T., Welin, B.V., Stress-induced accumulation and tissue-specific localization of dehydrins in Arabidopsis thaliana (2001) Plant Mol Biol, 45, pp. 263-279
  • Panza, V., Distéfano, A.J., Carjuzaa, P., Láinez, V., Del Vas, M., Maldonado, S., Detection of dehydrin-like proteins in embryos and endosperm of mature Euterpe edulis seeds (2007) Protoplasma, 231, pp. 1-5
  • Prego, I., Maldonado, S., Otegui, M., Seed structure and localization of reserves in Chenopodium quinoa (1998) Ann Bot, 82, pp. 481-488
  • Repo-Carrasco, R., Espinoza, C., Jacobsen, S.-E., Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and kañiwa (Chenopodium pallidicaule) (2003) Food Rev Int, 19, pp. 179-189
  • Rinne, P.L.H., Kaikuranta, P.L.M., Van Der Plas, L.H.W., Van Der Schoot, C., Dehydrins in cold-acclimated apices of birch (Betula pubescens Ehrh.): Production, localization and potential role in rescuing enzyme function during dehydration (1999) Planta, 209, pp. 377-388
  • Roberts, J.K., Desimone, N.A., Lingle, W.L., Dure III, L., Cellular concentrations and uniformity of cell-type accumulation of two Lea proteins in cotton embryos (1993) Plant Cell, 5, pp. 769-780
  • Robertson, M., Chandler, P.M., A dehydrin cognate protein from pea (Pisum sativum L.) with an atypical pattern of expression (1994) Plant Mol Biol, 26, pp. 805-816
  • Rorat, T., Plant dehydrins tissue location, structure and function (2006) Cell Mol Biol Lett, 11, pp. 536-556
  • Sun, W.Q., Leopold, A.C., Cytoplasmic vitrification and survival of anhydrobiotic organisms (1997) Comp Biochem Physiol Part a, 117, pp. 327-333
  • Svensson, J., (2001) Functional Studies of the Role of Plant Dehydrins in Tolerance to Salinity, Desiccation and Low Temperature, , Doctoral thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden
  • Tapia, M.E., Zonificación agroecológica del cultivo de la quinoa (Chenopodium quinoa Willd) (1999) Primer Taller Internacional Sobre Quinua: Recursos Geneticos Y Sistemas di Produccion, , http://www.rlc.fao.org/prior/segalim/prodalim/prodveg/cdrom/contenido/ libro14/cap1.2.htm, Regional Office for Latin America and the Caribbean, Food and Agriculture Organization of the United Nations, Santiago, Chile. Lima, Perú. (9 July 2007)
  • Turco, E., Close, T.J., Fenton, R.D., Ragazzi, A., Synthesis of dehydrin-like proteins in Quercus ilex L. and Quercus cerris L. seedlings subjected to water stress and infection with Phytophthora cinnamomi (2004) Physiol Mol Plant Pathol, 65, pp. 137-144
  • Werner-Fraczek, J.E., Close, T.J., Genetic studies of Triticeae dehydrins: Assignment of seed proteins and a regulatory factor to map positions (1998) Theor Appl Genet, 97, pp. 220-226
  • Wisniewski, M., Webb, R., Balsamo, R., Close, T.J., Yu, X.M., Griffith, M., Purification, immunolocalization, cryoprotective, and antifreeze activity of PCA60: A dehydrin from peach (Prunus persica) (1999) Physiol Plant, 105, pp. 600-608

Citas:

---------- APA ----------
Carjuzaa, P., Castellión, M., Distéfano, A.J., Del Vas, M. & Maldonado, S. (2008) . Detection and subcellular localization of dehydrin-like proteins in quinoa (Chenopodium quinoa Willd.) embryos. Protoplasma, 233(1-2), 149-156.
http://dx.doi.org/10.1007/s00709-008-0300-4
---------- CHICAGO ----------
Carjuzaa, P., Castellión, M., Distéfano, A.J., Del Vas, M., Maldonado, S. "Detection and subcellular localization of dehydrin-like proteins in quinoa (Chenopodium quinoa Willd.) embryos" . Protoplasma 233, no. 1-2 (2008) : 149-156.
http://dx.doi.org/10.1007/s00709-008-0300-4
---------- MLA ----------
Carjuzaa, P., Castellión, M., Distéfano, A.J., Del Vas, M., Maldonado, S. "Detection and subcellular localization of dehydrin-like proteins in quinoa (Chenopodium quinoa Willd.) embryos" . Protoplasma, vol. 233, no. 1-2, 2008, pp. 149-156.
http://dx.doi.org/10.1007/s00709-008-0300-4
---------- VANCOUVER ----------
Carjuzaa, P., Castellión, M., Distéfano, A.J., Del Vas, M., Maldonado, S. Detection and subcellular localization of dehydrin-like proteins in quinoa (Chenopodium quinoa Willd.) embryos. Protoplasma. 2008;233(1-2):149-156.
http://dx.doi.org/10.1007/s00709-008-0300-4