Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The dependence of the fluorescence quenching of electropolymerized poly(aniline-co-m-chloroaniline) with polymer composition has been investigated. Fluorescence emission in polyaniline is quenched when the polymer is oxidized (brought to emeraldine state); the copolymers exhibit decreasing quenching as chloroaniline contents increases. Quenching shows a strong decrease in the presence of 0.1% m-chloroaniline monomers in the feed. The presence of dichloroaniline units in the copolymer was confirmed by XPS measurements and a terpolymerization reaction scheme was developed, obtaining the kinetic parameters. By Monte Carlo simulation the sequence length distributions for different compositions were obtained and compared; it was found that quenching, for low aniline contents, requires aniline sequences of at least three units. The strong decrease in quenching at low m-chloroaniline contents is attributed to a double effect: breaking of conjugation in the emeraldine form by the presence of the chlorinated unit, and a disruption of the close chain packing in the crystalline domains, preventing state delocalization and thus efficient quenching. © 2012 Elsevier Ltd. All rights reserved.

Registro:

Documento: Artículo
Título:Photophysics of polyaniline: Sequence-length distribution dependence of photoluminescence quenching as studied by fluorescence measurements and Monte Carlo simulations
Autor:Antonel, P.S.; Völker, E.; Molina, F.V.
Filiación:Instituto de Química Física de Materiales Ambiente y Energía (INQUIMAE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellon II, piso 1, C1428EHA Buenos Aires, Argentina
Palabras clave:Conducting polymers; Microstructure; Terpolymerization; Aniline; Conducting polymers; Fluorescence quenching; Intelligent systems; Isomers; Microstructure; Polyaniline; Terpolymerization; Crystalline domains; Fluorescence emission; Fluorescence measurements; Photoluminescence quenching; Polymer composition; Reaction schemes; Sequence length distributions; XPS measurements; Monte Carlo methods
Año:2012
Volumen:53
Número:13
Página de inicio:2619
Página de fin:2627
DOI: http://dx.doi.org/10.1016/j.polymer.2012.04.041
Título revista:Polymer
Título revista abreviado:Polymer
ISSN:00323861
CODEN:POLMA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00323861_v53_n13_p2619_Antonel

Referencias:

  • Chandrasekhar, P., (1999) Conducting Polymers, Fundamentals and Applications: A Practical Approach, , 1st ed. Springer New York
  • Skotheim, T.A., Reynolds, J., (2006) Conjugated Polymers: Processing and Applications, , 3rd ed CRC Press Boca Raton, Fl, USA
  • Son, Y., Patterson, H.H., Carlin, C.M., (1989) Chem Phys Lett, 162, pp. 461-466
  • Ram, M.K., Mascetti, G., Paddeu, S., MacCioni, E., Nicolini, C., (1997) Synth Met, 89, pp. 63-69
  • Antonel, P.S., Andrade, E.M., Molina, F.V., (2004) Electrochim Acta, 49, pp. 3687-3692
  • Antonel, P.S., Molina, F.V., Andrade, E.M., (2007) J Electroanal Chem, 599, pp. 52-58
  • Antonel, P.S., Andrade, E.M., Molina, F.V., (2009) J Electroanal Chem, 632, pp. 72-79
  • Antonel, P.S., Andrade, E.M., Molina, F.V., (2009) React Funct Polym, 69, pp. 197-205
  • Pickup, P.G., (1999) Modern Aspects of Electrochemistry, Number 33, pp. 307-434. , R.E. White, J.O. Bockris, B.E. Conway, 1st ed Springer New York
  • Pouget, J.P., Jozefowicz, M.E., Epstein, A.J., Tang, X., MacDiarmid, A.G., (1991) Macromolecules, 24, pp. 779-789
  • Joo, J., Oblakowski, Z., Du, G., Pouget, J.P., Oh, E.J., Wiesinger, J.M., (1994) Phys Rev B, 49, pp. 2977-2980
  • Wu, C.-G., Chang, S.-S., (2004) J Phys Chem B, 109, pp. 825-832
  • Krinichnyi, V.I., Tokarev, S.V., Roth, H.-K., Schrodner, M., Wessling, B., (2005) Synth Met, 152, pp. 165-168
  • Wei, Y., Hariharan, R., Patel, S.A., (1990) Macromolecules, 23, pp. 758-764
  • Li, X.-G., Huang, M.-R., Zhu, L.-H., Yang, Y., (2001) J Appl Polym Sci, 82, pp. 790-798
  • Motheo, A.J., Pantoja, M.F., Venancio, E.C., (2004) Solid State Ionics, 171, pp. 91-98
  • Li, X., Zhou, H., Huang, M., (2004) J Polym Sci A Polym Chem, 42, pp. 6109-6124
  • Li, X.G., Zhou, H.J., Huang, M.R., (2005) Polymer, 46, pp. 1523-1533
  • Kim, E.M., Jung, C.K., Choi, E.Y., Gao, C., Kim, S.W., Lee, S.H., (2011) Polymer, 52, pp. 4451-4455
  • Sasikumar, R., Manisankar, P., (2011) Polymer, 52, pp. 3710-3716
  • Shah, A.-H.A., Bilal, S., Holze, R., (2012) Synth Met, 162, pp. 356-363
  • Díaz, F., Sánchez, C., Del Valle, M., Torres, J., Tagle, L., (2001) Synth Met, 118, pp. 25-31
  • Li, X.-G., Huang, M.-R., Lu, Y.-Q., Zhu, M.-F., (2005) J Mater Chem, 15, p. 1343
  • Waware, U.S., Umare, S.S., (2005) React Funct Polym, 65, pp. 343-350
  • Binder, K., (1995) Monte Carlo and Molecular Dynamics Simulations in Polymer Science, , Oxford University Press
  • Platkowski, K., Reichert, K.-H., (1999) Polymer, 40, pp. 1057-1066
  • Feng, J., Ruckenstein, E., (2002) Polymer, 43, pp. 5775-5790
  • Termonia, Y., (2009) Polymer, 50, pp. 1062-1066
  • Sun, D., Guo, H., (2011) Polymer, 52, pp. 5922-5932
  • Tobita, H., (1993) Macromolecules, 26, pp. 836-841
  • Zaldivar, D., Fuentes, G., Monett, D., Peniche, C., Arcis, R.W., Soto, A., (2002) Lat Am Appl Res, 32, pp. 117-122
  • Anantawaraskul, S., Soares, J.B.P., Wood-Adams, P.M., (2003) Macromol Theor Simul, 12, pp. 229-236
  • Hou, C., Sun, C., Ying, L., Wang, C., (2005) J Appl Polym Sci, 96, pp. 483-488
  • Mohammadi, Y., Najafi, M., Haddadi-Asl, V., (2005) Macromol Theor Simul, 14, pp. 325-336
  • Athawale, A.A., Patil, S.F., Deore, B., Patil, R.C., Vijayamohanan, K., (1997) Polym J, 29, pp. 787-794
  • Morales, G.M., Llusa, M., Miras, M.C., Barbero, C., (1997) Polymer, 38, pp. 5247-5250
  • Mayo, F.R., Walling, C., (1950) Chem Rev, 46, pp. 191-287
  • Haberfield, P., Paul, D., (1965) J Am Chem Soc, 87, p. 5502
  • Gassman, P.G., Campbell, G.A., (1971) J Am Chem Soc, 93, pp. 2567-2569
  • Alfrey, T., Goldfinger, G., (1944) J Chem Phys, 12, p. 322
  • Walling, C., Briggs, E.R., (1945) J Am Chem Soc, 67, pp. 1774-1778
  • Nelder, J.A., Mead, R., (1965) Comput J, 7, pp. 308-313
  • Petersen, W., (1994) Int J High Speed Comp, 6, pp. 387-398
  • Surwade, S.P., Manohar, N., Manohar, S.K., (2009) Macromolecules, 42, pp. 1792-1795
  • Prigodin, V.N., Epstein, A.J., (2002) Europhys Lett, 60, pp. 750-756
  • Prigodin, V.N., Epstein, A.J., (2001) Synth Met, 125, pp. 43-53
  • Sutar, D.S., Tewari, R., Dey, G.K., Gupta, S.K., Yakhmi, J.V., (2009) Synth Met, 159, pp. 1067-1071

Citas:

---------- APA ----------
Antonel, P.S., Völker, E. & Molina, F.V. (2012) . Photophysics of polyaniline: Sequence-length distribution dependence of photoluminescence quenching as studied by fluorescence measurements and Monte Carlo simulations. Polymer, 53(13), 2619-2627.
http://dx.doi.org/10.1016/j.polymer.2012.04.041
---------- CHICAGO ----------
Antonel, P.S., Völker, E., Molina, F.V. "Photophysics of polyaniline: Sequence-length distribution dependence of photoluminescence quenching as studied by fluorescence measurements and Monte Carlo simulations" . Polymer 53, no. 13 (2012) : 2619-2627.
http://dx.doi.org/10.1016/j.polymer.2012.04.041
---------- MLA ----------
Antonel, P.S., Völker, E., Molina, F.V. "Photophysics of polyaniline: Sequence-length distribution dependence of photoluminescence quenching as studied by fluorescence measurements and Monte Carlo simulations" . Polymer, vol. 53, no. 13, 2012, pp. 2619-2627.
http://dx.doi.org/10.1016/j.polymer.2012.04.041
---------- VANCOUVER ----------
Antonel, P.S., Völker, E., Molina, F.V. Photophysics of polyaniline: Sequence-length distribution dependence of photoluminescence quenching as studied by fluorescence measurements and Monte Carlo simulations. Polymer. 2012;53(13):2619-2627.
http://dx.doi.org/10.1016/j.polymer.2012.04.041