Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The Mediator complex is a greater than 1-megadalton complex, composed of about 30 subunits and found in most eukaryotes, whose main role is to transmit signals from DNA-bound transcription factors to RNA Polymerase II. The proteasome is emerging as an important regulator of transcription during both initiation and elongation. It is increasing the number of cases where the proteolysis of transcriptional activators by the proteasome activates their function. This counterintuitive phenomenon was called "activation by destruction." Here, we show that, in Arabidopsis (Arabidopsis thaliana), PHYTOCHROME AND FLOWERING TIME1 (PFT1), the MEDIATOR25 (MED25) subunit of the plant Mediator complex, is degraded by the proteasome and that proteasome-mediated PFT1 turnover is coupled to its role in stimulating the transcription of FLOWERING LOCUS T, the plant florigen, which is involved in the process of flowering induction. We further identify two novel RING-H2 proteins that target PFT1 for degradation. We show that MED25-BINDING RING-H2 PROTEIN1 (MBR1) and MBR2 bind to PFT1 in yeast (Saccharomyces cerevisiae) and in vitro, and they promote PFT1 degradation in vivo, in a RING-H2- dependent way, typical of E3 ubiquitin ligases. We further show that both MBR1 and MBR2 also promote flowering by PFT1- dependent and -independent mechanisms. Our findings extend the phenomenon of activation by destruction to a Mediator subunit, adding a new mechanism by which Mediator subunits may regulate downstream genes in specific pathways. Furthermore, we show that two novel RING-H2 proteins are involved in the destruction of PFT1, adding new players to this process in plants. © 2012 American Society of Plant Biologists.

Registro:

Documento: Artículo
Título:Proteasome-mediated turnover of arabidopsis MED25 is coupled to the activation of FLOWERING LOCUS T transcription
Autor:Iñigo, S.; Giraldez, A.N.; Chory, J.; Cerdán, P.D.
Filiación:Fundación Instituto Leloir, IIBBA-Consejo Nacional de Investigaciones Científicas y Técnicas, C1405BWE Buenos Aires, Argentina
Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
Universidad Nacional de Quilmes, B1876BXD Bernal, Argentina
Howard Hughes Medical Institute and Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, United States
Instituto de Ciencia y Tecnología Dr. César Milstein, Saladillo 2468, 1440 Buenos Aires, Argentina
Palabras clave:Arabidopsis protein; FT protein, Arabidopsis; nuclear protein; PFT1 protein, Arabidopsis; proteasome; ubiquitin protein ligase; amino acid sequence; Arabidopsis; article; chemistry; flower; gene expression regulation; gene silencing; genetic transcription; genetics; metabolism; molecular genetics; mutation; physiology; protein binding; protein degradation; protein stability; protein tertiary structure; Amino Acid Sequence; Arabidopsis; Arabidopsis Proteins; Flowers; Gene Expression Regulation, Plant; Gene Knockdown Techniques; Molecular Sequence Data; Mutation; Nuclear Proteins; Proteasome Endopeptidase Complex; Protein Binding; Protein Stability; Protein Structure, Tertiary; Proteolysis; Transcription, Genetic; Ubiquitin-Protein Ligases; Arabidopsis; Arabidopsis thaliana; Eukaryota; Saccharomyces cerevisiae
Año:2012
Volumen:160
Número:3
Página de inicio:1662
Página de fin:1673
DOI: http://dx.doi.org/10.1104/pp.112.205500
Título revista:Plant Physiology
Título revista abreviado:Plant Physiol.
ISSN:00320889
CODEN:PLPHA
CAS:proteasome, 140879-24-9; ubiquitin protein ligase, 134549-57-8; Arabidopsis Proteins; FT protein, Arabidopsis; Nuclear Proteins; PFT1 protein, Arabidopsis; Proteasome Endopeptidase Complex, 3.4.25.1; Ubiquitin-Protein Ligases, 6.3.2.19
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_00320889_v160_n3_p1662_Inigo.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00320889_v160_n3_p1662_Inigo

Referencias:

  • Alonso, J.M., Stepanova, A.N., Leisse, T.J., Kim, C.J., Chen, H., Shinn, P., Stevenson, D.K., Cheuk, R., Genome-wide insertional mutagenesis of Arabidopsis thaliana (2003) Science, 301, pp. 653-657
  • Evidence for network evolution in an Arabidopsis interactome map (2011) Science, 333, pp. 601-607. , Arabidopsis Interactome Mapping Consortium
  • Autran, D., Jonak, C., Belcram, K., Beemster, G.T., Kronenberger, J., Grandjean, O., Inzé, D., Traas, J., Cell numbers and leaf development in Arabidopsis: A functional analysis of the STRUWWELPETER gene (2002) EMBO J, 21, pp. 6036-6049
  • Bäckström, S., Elfving, N., Nilsson, R., Wingsle, G., Björklund, S., Purification of a plant mediator from Arabidopsis thaliana identifies PFT1 as the Med25 subunit (2007) Mol Cell, 26, pp. 717-729
  • Borggrefe, T., Yue, X., Interactions between subunits of the Mediator complex with gene-specific transcription factors (2011) Semin Cell Dev Biol, 22, pp. 759-768
  • Bourbon, H.M., Comparative genomics supports a deep evolutionary origin for the large, four-module transcriptional mediator complex (2008) Nucleic Acids Res, 36, pp. 3993-4008
  • Brower, C.S., Sato, S., Tomomori-Sato, C., Kamura, T., Pause, A., Stearman, R., Klausner, R.D., Sorokina, I., Mammalian mediator subunit mMED8 is an Elongin BC-interacting protein that can assemble with Cul2 and Rbx1 to reconstitute a ubiquitin ligase (2002) Proc Natl Acad Sci USA, 99, pp. 10353-10358
  • Bryant, N., Lloyd, J., Sweeney, C., Myouga, F., Meinke, D., Identification of nuclear genes encoding chloroplast-localized proteins required for embryo development in Arabidopsis (2011) Plant Physiol, 155, pp. 1678-1689
  • Cerdán, P.D., Chory, J., Regulation of flowering time by light quality (2003) Nature, 423, pp. 881-885
  • Cevik, V., Kidd, B.N., Zhang, P., Hill, C., Kiddle, S., Denby, K.J., Holub, E.B., Schenk, P.M., MEDIATOR25 acts as an integrative hub for the regulation of jasmonate-responsive gene expression in Arabidopsis (2012) Plant Physiol, 160, pp. 541-555
  • Chae, E., Tan, Q.K., Hill, T.A., Irish, V.F., An Arabidopsis F-box protein acts as a transcriptional co-factor to regulate floral development (2008) Development, 135, pp. 1235-1245
  • Chen, R., Jiang, H., Li, L., Zhai, Q., Qi, L., Zhou, W., Liu, X., Sun, J., The Arabidopsis Mediator subunit MED25 differentially regulates jasmonate and abscisic acid signaling through interacting with the MYC2 and ABI5 transcription factors (2012) Plant Cell, 24, pp. 2898-2916
  • Clough, S.J., Bent, A.F., Floral dip: A simplified method for Agrobacteriummediated transformation of Arabidopsis thaliana (1998) Plant J, 16, pp. 735-743
  • Dhawan, R., Luo, H., Foerster, A.M., Abuqamar, S., Du, H.N., Briggs, S.D., Mittelsten Scheid, O., Mengiste, T., HISTONE MONOUBIQUITINATION1 interacts with a subunit of the mediator complex and regulates defense against necrotrophic fungal pathogens in Arabidopsis (2009) Plant Cell, 21, pp. 1000-1019
  • Elfving, N., Davoine, C., Benlloch, R., Blomberg, J., Brännström, K., Müller, D., Nilsson, A., Wingsle, G., The Arabidopsis thaliana Med25 mediator subunit integrates environmental cues to control plant development (2011) Proc Natl Acad Sci USA, 108, pp. 8245-8250
  • Geng, F., Tansey, W.P., Similar temporal and spatial recruitment of native 19S and 20S proteasome subunits to transcriptionally active chromatin (2012) Proc Natl Acad Sci USA, 109, pp. 6060-6065
  • Geng, F., Wenzel, S., Tansey, W.P., Ubiquitin and proteasomes in transcription (2012) Annu Rev Biochem, 81, pp. 177-201
  • Gillmor, C.S., Park, M.Y., Smith, M.R., Pepitone, R., Kerstetter, R.A., Poethig, R.S., The MED12-MED13 module of Mediator regulates the timing of embryo patterning in Arabidopsis (2010) Development, 137, pp. 113-122
  • Imura, Y., Kobayashi, Y., Yamamoto, S., Furutani, M., Tasaka, M., Abe, M., Araki, T., CRYPTIC PRECOCIOUS/MED12 is a novel flowering regulator with multiple target steps in Arabidopsis (2012) Plant Cell Physiol, 53, pp. 287-303
  • Iñigo, S., Alvarez, M.J., Strasser, B., Califano, A., Cerdán, P.D., PFT1, the MED25 subunit of the plant Mediator complex, promotes flowering through CONSTANS dependent and independent mechanisms in Arabidopsis (2012) Plant J, 69, pp. 601-612
  • Ito, J., Sono, T., Tasaka, M., Furutani, M., MACCHI-BOU 2 is required for early embryo patterning and cotyledon organogenesis in Arabidopsis (2011) Plant Cell Physiol, 52, pp. 539-552
  • Kidd, B.N., Edgar, C.I., Kumar, K.K., Aitken, E.A., Schenk, P.M., Manners, J.M., Kazan, K., The mediator complex subunit PFT1 is a key regulator of jasmonate-dependent defense in Arabidopsis (2009) Plant Cell, 21, pp. 2237-2252
  • Kim, Y.J., Zheng, B., Yu, Y., Won, S.Y., Mo, B., Chen, X., The role of Mediator in small and long noncoding RNA production in Arabidopsis thaliana (2011) EMBO J, 30, pp. 814-822
  • Klose, C., Buche, C., Fernandez, A.P., Schafer, E., Zwick, E., Kretsch, T., The Mediator complex subunit PFT1 interferes with COP1 and HY5 in the regulation of Arabidopsis light signaling (2012) Plant Physiol, 160, pp. 289-307
  • Knight, H., Thomson, A.J., McWatters, H.G., SENSITIVE TO FREEZING6 integrates cellular and environmental inputs to the plant circadian clock (2008) Plant Physiol, 148, pp. 293-303
  • Kraft, E., Stone, S.L., Ma, L., Su, N., Gao, Y., Lau, O.S., Deng, X.W., Callis, J., Genome analysis and functional characterization of the E2 and RINGtype E3 ligase ubiquitination enzymes of Arabidopsis (2005) Plant Physiol, 139, pp. 1597-1611
  • Lalanne, E., Michaelidis, C., Moore, J.M., Gagliano, W., Johnson, A., Patel, R., Howden, R., Twell, D., Analysis of transposon insertion mutants highlights the diversity of mechanisms underlying male progamic development in Arabidopsis (2004) Genetics, 167, pp. 1975-1986
  • Lee, H.K., Park, U.H., Kim, E.J., Um, S.J., MED25 is distinct from TRAP220/MED1 in cooperating with CBP for retinoid receptor activation (2007) EMBO J, 26, pp. 3545-3557
  • Lipford, J.R., Smith, G.T., Chi, Y., Deshaies, R.J., A putative stimulatory role for activator turnover in gene expression (2005) Nature, 438, pp. 113-116
  • Lowry, O.H., Rosebrough, N.J., Lewis Farr, A., Randall, R.J., Protein measurement with the Folin phenol reagent (1951) J Biol Chem, 193, pp. 265-275
  • Mathur, S., Vyas, S., Kapoor, S., Tyagi, A.K., The Mediator complex in plants: Structure, phylogeny, and expression profiling of representative genes in a dicot (Arabidopsis) and a monocot (rice) during reproduction and abiotic stress (2011) Plant Physiol, 157, pp. 1609-1627
  • McElver, J., Tzafrir, I., Aux, G., Rogers, R., Ashby, C., Smith, K., Thomas, C., Cushman, M.A., Insertional mutagenesis of genes required for seed development in Arabidopsis thaliana (2001) Genetics, 159, pp. 1751-1763
  • Milbradt, A.G., Kulkarni, M., Yi, T., Takeuchi, K., Sun, Z.Y., Luna, R.E., Selenko, P., Wagner, G., Structure of the VP16 transactivator target in the Mediator (2011) Nat Struct Mol Biol, 18, pp. 410-415
  • Muratani, M., Kung, C., Shokat, K.M., Tansey, W.P., The F box protein Dsg1/Mdm30 is a transcriptional coactivator that stimulates Gal4 turnover and cotranscriptional mRNA processing (2005) Cell, 120, pp. 887-899
  • Myung, J., Kim, K.B., Crews, C.M., The ubiquitin-proteasome pathway and proteasome inhibitors (2001) Med Res Rev, 21, pp. 245-273
  • Nakamura, Y., Yamamoto, K., He, X., Otsuki, B., Kim, Y., Murao, H., Soeda, T., Zhang, Z., Wwp2 is essential for palatogenesis mediated by the interaction between Sox9 and mediator subunit 25 (2011) Nat Commun, 2, p. 251
  • Ossowski, S., Schwab, R., Weigel, D., Gene silencing in plants using artificial microRNAs and other small RNAs (2008) Plant J, 53, pp. 674-690
  • Ou, B., Yin, K.Q., Liu, S.N., Yang, Y., Gu, T., Wing Hui, J.M., Zhang, L., Matsui, M., A high-throughput screening system for Arabidopsis transcription factors and its application to Med25-dependent transcriptional regulation (2011) Mol Plant, 4, pp. 546-555
  • Peng, M., Hannam, C., Gu, H., Bi, Y.M., Rothstein, S.J., A mutation in NLA, which encodes a RING-type ubiquitin ligase, disrupts the adaptability of Arabidopsis to nitrogen limitation (2007) Plant J, 50, pp. 320-337
  • Rana, R., Surapureddi, S., Kam, W., Ferguson, S., Goldstein, J.A., Med25 is required for RNA polymerase II recruitment to specific promoters, thus regulating xenobiotic and lipid metabolism in human liver (2011) Mol Cell Biol, 31, pp. 466-481
  • Rosso, M.G., Li, Y., Strizhov, N., Reiss, B., Dekker, K., Weisshaar, B., An Arabidopsis thaliana T-DNA mutagenized population (GABI-Kat) for flanking sequence tag-based reverse genetics (2003) Plant Mol Biol, 53, pp. 247-259
  • Rotin, D., Kumar, S., Physiological functions of the HECT family of ubiquitin ligases (2009) Nat Rev Mol Cell Biol, 10, pp. 398-409
  • Roupelieva, M., Griffiths, S.J., Kremmer, E., Meisterernst, M., Viejo-Borbolla, A., Schulz, T., Haas, J., Kaposi's sarcoma-associated herpesvirus Lana-1 is a major activator of the serum response element and mitogenactivated protein kinase pathways via interactions with the Mediator complex (2010) J Gen Virol, 91, pp. 1138-1149
  • Salghetti, S.E., Caudy, A.A., Chenoweth, J.G., Tansey, W.P., Regulation of transcriptional activation domain function by ubiquitin (2001) Science, 293, pp. 1651-1653
  • Salghetti, S.E., Muratani, M., Wijnen, H., Futcher, B., Tansey, W.P., Functional overlap of sequences that activate transcription and signal ubiquitin-mediated proteolysis (2000) Proc Natl Acad Sci USA, 97, pp. 3118-3123
  • Santner, A., Estelle, M., The ubiquitin-proteasome system regulates plant hormone signaling (2010) Plant J, 61, pp. 1029-1040
  • Stone, S.L., Hauksdóttir, H., Troy, A., Herschleb, J., Kraft, E., Callis, J., Functional analysis of the RING-type ubiquitin ligase family of Arabidopsis (2005) Plant Physiol, 137, pp. 13-30
  • Taatjes, D.J., The human Mediator complex: A versatile, genome-wide regulator of transcription (2010) Trends Biochem Sci, 35, pp. 315-322
  • Tsai, C.J., Nussinov, R., Gene-specific transcription activation via longrange allosteric shape-shifting (2011) Biochem J, 439, pp. 15-25
  • Voinnet, O., Rivas, S., Mestre, P., Baulcombe, D., An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus (2003) Plant J, 33, pp. 949-956
  • Vojnic, E., Mourão, A., Seizl, M., Simon, B., Wenzeck, L., Larivière, L., Baumli, S., Sattler, M., Structure and VP16 binding of the Mediator Med25 activator interaction domain (2011) Nat Struct Mol Biol, 18, pp. 404-409
  • Wang, W., Chen, X., HUA ENHANCER3 reveals a role for a cyclindependent protein kinase in the specification of floral organ identity in Arabidopsis (2004) Development, 131, pp. 3147-3156
  • Wang, X., Muratani, M., Tansey, W.P., Ptashne, M., Proteolytic instability and the action of nonclassical transcriptional activators (2010) Curr Biol, 20, pp. 868-871
  • Wigge, P.A., FT, a mobile developmental signal in plants (2011) Curr Biol, 21, pp. R374-R378
  • Wigge, P.A., Kim, M.C., Jaeger, K.E., Busch, W., Schmid, M., Lohmann, J.U., Weigel, D., Integration of spatial and temporal information during floral induction in Arabidopsis (2005) Science, 309, pp. 1056-1059
  • Wollenberg, A.C., Strasser, B., Cerdán, P.D., Amasino, R.M., Acceleration of flowering during shade avoidance in Arabidopsis alters the balance between FLOWERING LOCUS C-mediated repression and photoperiodic induction of flowering (2008) Plant Physiol, 148, pp. 1681-1694
  • Xu, R., Li, Y., Control of final organ size by Mediator complex subunit 25 in Arabidopsis thaliana (2011) Development, 138, pp. 4545-4554
  • Yang, F., DeBeaumont, R., Zhou, S., Näär, A.M., The activator-recruited cofactor/Mediator coactivator subunit ARC92 is a functionally important target of the VP16 transcriptional activator (2004) Proc Natl Acad Sci USA, 101, pp. 2339-2344
  • Yang, M., Hay, J., Ruyechan, W.T., Varicella-zoster virus IE62 protein utilizes the human mediator complex in promoter activation (2008) J Virol, 82, pp. 12154-12163

Citas:

---------- APA ----------
Iñigo, S., Giraldez, A.N., Chory, J. & Cerdán, P.D. (2012) . Proteasome-mediated turnover of arabidopsis MED25 is coupled to the activation of FLOWERING LOCUS T transcription. Plant Physiology, 160(3), 1662-1673.
http://dx.doi.org/10.1104/pp.112.205500
---------- CHICAGO ----------
Iñigo, S., Giraldez, A.N., Chory, J., Cerdán, P.D. "Proteasome-mediated turnover of arabidopsis MED25 is coupled to the activation of FLOWERING LOCUS T transcription" . Plant Physiology 160, no. 3 (2012) : 1662-1673.
http://dx.doi.org/10.1104/pp.112.205500
---------- MLA ----------
Iñigo, S., Giraldez, A.N., Chory, J., Cerdán, P.D. "Proteasome-mediated turnover of arabidopsis MED25 is coupled to the activation of FLOWERING LOCUS T transcription" . Plant Physiology, vol. 160, no. 3, 2012, pp. 1662-1673.
http://dx.doi.org/10.1104/pp.112.205500
---------- VANCOUVER ----------
Iñigo, S., Giraldez, A.N., Chory, J., Cerdán, P.D. Proteasome-mediated turnover of arabidopsis MED25 is coupled to the activation of FLOWERING LOCUS T transcription. Plant Physiol. 2012;160(3):1662-1673.
http://dx.doi.org/10.1104/pp.112.205500